

CHT/CFD for heat-exchanger design; and some recent developments by Brian Spalding

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

Contents

Part 1: Heat exchangers

- Pre-CFD;
- Space-averaged CFD
- Detailed-geometry CFD
- Space-averaged and detailed geometry CFD in combination

Part 2. Something about Suhas

Part 3: Algorithmic novelties

- SIVA and SIMPLE combined
- Odd-even segregation
- Simultaneous fluid flow and solid stress
- Free-surface posibilities

Pre-CFD : **guess** flow patterns; assume **uniform** coefficients

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

- Text-books contain formulae for effectiveness & pressure drop. In parallel-, counter-& cross-flow.
- The true flow pattern is complex, but unknown; so formula-fitting idealised guesses are used, as shown on the right.
- Heat-transfer and friction coefficients in fact vary from place to place. Unknowably; so therefore assumed not to vary.
- Most heat-exchangers are still designed in the same way: assume or guess. No CFD/CHT!

What is CFD? There are two kinds

CHT15 Rutgers U May, 2015

Detailed-geometry CFD (DGCFD) uses a **fine** grid for a **part** of the whole domain, *e.g.* **a tube-bank**.

1 1753 1 775777 1 184255 2 7 75510 2 7 75710 2 7 75700 2 7 7

Space-averaged CFD (SACFD) uses a **coarser** grid for the **whole** domain, *e.g.* a shell-and-tube **heat exchanger**.

SACFD represents the small-scale behaviour by way of **formulae** for **volumetric** friction and heat-transfer **coefficients** *etc*.

Formulae may be derived from **experiments** or from **DG**CFD studies. The overall-prediction realism **depends on their** accuracy.

4 decades ago, SACFD enabled flow patterns to be **calculated** not guessed

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

- The first shell-side fluid-flow pattern was calculated by Suhas Patankar and myself in **1973.** He drew this -->
- Because computers were then small and slow, the computational grids were coarse, as shown on the right.
- Nevertheless, the principle was proved; and the practice helped in late 1970s to solve severe problems experienced by the nuclear-power industry.
- They involved two-phase flow, *i.e.* steam and water, inter-mingled, each with different velocity components.

Fig. 3,2-1 Velacity rectors in the control x2 plane.

Fig. 3.2-2 Yolocity vectors in the three sy planes.

IPSA (*i.e.* inter-phase Slip Algorithm) & SACFD (*i.e.* Space-Averaged CFD)

CHT15 Rutgers U May, 2015

Water-cooled power-station steam condensers; early 1980s

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

Enlightened condenser designers therefore used CFD to compute flow-patterns in order to predict influences of tube-bundle geometry and baffles on performance.
The image on the left shows the pattern by way of calculated velocity vectors.

• On the **right** are shown some predicted tubeside **temperature contours**, deduced from the (dependent-on-local-air-content) condensation rates. So we **can** calculate; need not guess.

Another power-station application

CHT15 Rutgers U May, 2015

In the late 1980s the effect of wind on air and water temperatures in natural-draft cooling towers was first computed by D.Radosavlevich.

CFD was used for simulating 2phase-flow, namely upwardmoving air and downward-moving water near the base of the tower.

But today's towers are still designed by way of pre-CFD methods.

Why is CFD not in everyday use for heat-exchanger design?

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

Some possible answers:

- Vendors of pre-CFD software wish to retain their income?
- Their customers do not read the research-oriented publications of Bengt Sunden *et al*?
- Vendors of better alternatives have not worked hard enough to prove and publicise their superiority?
- The better alternatives have not been made easy and inexpensive enough to use?

Conclusion: All the above; but (lack of) ease-of-use is the weightiest.

Example: The aircooled steam condenser.

It's not easy. How would **you** begin?

2010: A multiple-grid example: (one half of) an air-cooled condenser

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

Most of the space in these condensers is occupied by air. Steam and water are present only inside the tubes.

Therefore a 'grid trick' that PHOENICS can use is to cover the tube bundle **twice:** on left for air; on right for steam+water.

Few (even-CFD-using) designers are skilled enough to use this trick; but, if a special **SimScene** has been created, then **anyone** can do so.

What are SimScenes? They are apps for cities, rooms, heat exchangers, condensers, cooling towers, *etc*.

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

SimScenes are "apps on a app-tree" as shown below.

The CFD code is out of sight among the roots.

A SimScene is specific to a particular equipment class, *e.g.* air-cooled condensers.

It has appropriate menus, for making only **meaningful-touser** choices; *e.g.*

- Air temperature
- Steam pressure
- Air-in-steam %
- Tube diameter
 number, spacing
 Fin dimensions.

Part of the SimScene menu set for an air-cooled condenser

CHT for heat-exchanger design; present and future past, |

A SimScene is like a (CFD-based) car. Its user knows as much about CFD as a car-driver knows about thermodynamics.

But he can choose from menus, written in **language which he does understand**. Below, the sub-menu names are on the left. The one for air-cooled-condenser boundary conditions is shown.

Top Page Inspect or modify input data View file:		
general	from_Re	 inlet velocity setting
geometry	from_Re	Reynolds number
variables solved		inlet velocity, m/s
	80.0	inlet temperature, degC
material properties	0.0	outlet gauge pressure, bar
models	20.0	external temperature section 1, degC
boundary conditions	1 0+4	external heat-tr, coeff.
output	1.0+4	sect.1, W/(m**2*degC)
computational grid	0.0	fouling resistance m**2 degC/W

Part of the SimScene menu set for all shell-and-tube heat exchangers

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

Results from Heat-Exchanger-Design SimScene: E-type, counter-current, 4pass, 6-baffles

CHT for heat-exchanger design; past, present and future

Heat-transfer effectiveness and pressure drops are calculated; but also **much more** about internal processes, such as:

Sometime contours show that there must be **mistakes**, such as here: at tube outlet, the temperature is **the same as at inlet**!

SimScenes will change how engineering enterprises use CFD

CHT15 Rutgers U May, 2015

- No longer will firms have to employ expensive CFD specialists.
- Nor purchase licences for **more-powerful-than-needed** generalpurpose CFD software.
- Their SimScene-aware engineers will access **Internet**; upload a file containing the **scenario-defining input data** to 'the Cloud'; accept the **pay-as-you-go** cost estimate; **download the files** containing the computed output; if satisfied **authorise payment** of the bill.
- Only after many such experiences may they **perhaps** decide to buy a licence allowing their engineers to do the calculations for themselves.
- The technological basis for this mode of CFD exploitation is **available right now**.
- But wait: all the applications shown have been of **Space-Averaged** CFD. Has **Detailed-Geometry** CFD no contribution to make?
- Yes, it has; as four excerpts from a 2011 lecture explain.

Excerpt 1. Critique of the formulae used by **both** current methods and SACFD

CHT15 Rutgers U May, 2015

Finned-tube bundles are in common use; and handbooks contain formulae **purporting** to represent their behaviour; for example this, from Rohsenow and Hartnett:

$$\frac{h_0 D_r}{k} = 0.134 \left(\frac{D_r G_{\text{max}}}{\mu} \right)^{0.681} \left(\frac{c_{\mu}}{k} \right)^{1/3} \left(\frac{s}{l} \right)^{0.2} \left(\frac{s}{l} \right)^{0.113}$$

where h_0 is mean heat transfer coefficient Btu/hr-ft² external area-°F; D_r is root diameter of tube, ft; k is thermal conductivity; G_{\max} is mass rate of flow at minimum cross section, lb/ft^2 -hr; s is distance between adjacent fins, in.; l is fin height, in.; t is fin thickness, in.; c is specific heat; μ is viscosity at bulk temperature, lb/ft-hr

$$\frac{\Delta P g_c \rho}{n G_m^2} = f = 18.93 \left(\frac{D_r G_m}{\mu} \right)^{-0.316} \left(\frac{P_t}{d_r} \right)^{-0.927} \left(\frac{P_t}{P_l} \right)^{0.515}$$

Such formulae are copied slavishly from handbook to handbook; but can they truly be relied upon? Surely not because...

Excerpt 2. Critique of the formulae used by **both** current methods and SACFD

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future (1) The number of dimensionless parameters needed for finned-tube bundles (geometry, material properties, velocities) should be at least **12**.

(2) The army of experimentalists needed systematically to explore the corresponding **12-dimensional space** was surely never mobilised.

(3) Even if it had been, it is **not probable** that its findings would so conveniently have fitted the invariably-offered **power-law** forms:

- Euler_number = a * Reynolds_number b and
- Nusselt_number = d * Reynolds_number ^e * Prandtl_number ^f.

About such subversive thoughts, the heat-transfer community maintains a conspiracy of silence.

In the future it will not need to do so; for Detailed-Geometry CFD, applied to a few-tube segment of the bundle, will **compute** friction and heat-transfer coefficients **for the precise conditions in question**.

Excerpt 3. Outline of a not-yetexisting but wholly practicable Internet service:

4.750477

4.453572

4.156668

3.859763

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

Log in to 'Heat-Transfer-On-Line'. Click on 'finned-tube bundle'.

Select or type in the material, geometric and boundary-condition ulletinformation which concerns you.

Click submit. •

Within few а seconds you should receive a stream of graphical and alphanumeric files, in a form your eye can enjoy and your computer software can employ in its own computations.

Velocity, m/s Computed temperature contours on the fin surface in a finned-tube bank, and velocity vectors

Here is an example.

Excerpt 4. Why DGCFD predictions will be better than any handbook

- Despite the **doubt about all turbulent–flow** predictions, finned-tube flows are **near-wall** ones about which doubt is least.
- The **detailed fin shape** can be imported from a CAD file; so even small-scale corrugations can be captured.
- Because only a few-tube segment is considered, the grid can be fine enough to **minimise numerical inaccuracy**.
- The grid-fineness will also allow the fluid and metal **properties to vary** through the integration domain under the influence of **temperature**, as they do in practice.
- The considered approach-flow directions can be arbitrarily **oblique** to the tube axes, with effects handbooks do not even mention.
- Computer times will be small enough to provide the **linearised expressions** which, rather than single-situation constants, are needed for building into SACFD models.

Present lecture resumed: What advances since 2011?

There is a new concept: **Connected Multi-Run**, *i.e.* CMR.

CHT for heat-exchanger design; past, present and future

SACFD and DGCFD combined in Connected Multi-Runs

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; present and future past,

There are many possible **variants**: number of points selected; frequency of information exchange; exchanged-information format.

It might be said that **CMR is a new kind of CFD**, still scarcely explored.

Thus heat-exchanger engineering, as well as profiting from CFD, is **contributing** also to **its development**.

CHT/CFD applied to heat-transfer equipment: **conclusions**

CHT15 Rutgers U May, 2015

At long last, user interfaces are being created which allow design of all kinds of heat-exchange equipment to be based on physics rather than guess-work.

This is true of **two-phase** equipment (condensers, steamgenerators, direct-contact cooling towers) as well as singlephase ones.

Experimental studies are still needed; but their main purpose in now validation, *i.e.* testing, and leading to improvements in Simulation-Scenario packages (*aka* apps).

New CFD techniques (multiple inter-linked grids, connected multi-runs) are of assistance; but the user **need not** know about them. The SimScene activates them **automatically**.

General-Purpose computer codes (PHOENICS, Fluent, Open-Foam) are now just CFD engines, under the hood. Their drivers are the Apps. End of part 1.

Part 2: Suhas at Imperial College

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

This is how he looked in 1964.

It was from him that I first heard the word 'guru'. I, he told me, was **his** guru.

Only later, Wikipedia showed me how I appeared to him;

and that he should have told me that he was my **shishya**; and could assure me that he:

- was "not attached to any impermanent thing";
- had "renounced the desire for a son";
- · had "no desire for wealth"; and
- was "at at peace with himself".

This is how it **should** have been.

Nevertheless our guru-shishya relationship continued successfully for many years.

Prehistory: How we stumbled on the Finite-Volume Method

CHT15 Rutgers U May, 2015

When Suhas arrived, I was using **boundary-layer theory**, for heat and mass transfer to solid and liquid surfaces. My own PhD had

concerned the combustion of liquid fuels.

The **prediction method** which I adopted was that used by **von Karman** (1921) for aerodynamic friction,

and by Kruzhilin (1936) for heat transfer.

This integral-profile method involved:

- assuming a formula for the profile of velocity or temperature;
- **determining its free parameters** from the boundary conditions;
- multiplying the partial differential equations by arbitrary weighting factors, before integration to form ordinary differential equations;
- solving these numerically to deduce momentum and energy thicknesses.

The questions: What profiles? What weighting functions?

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

It sometimes worked quite well, as shown here, by dimensionless **burning rate** *vs.* '**transfer number**'.

However, my students and I made systematic efforts to invent **more flexible formulae** for the **profiles** of velocity, temperature and concentration.

We also developed moreelaborate '**weighting functions**' by which the equations were **multiplied before integration**.

A lucky speculation

CHT15 Rutgers U May, 2015

Then, by good fortune, I expressed during a lecture the following speculation:

- that probably the most flexible formula of all would be a piece-wise linear one;
- that if the widths of the
'pieces' were the limits of
the integration, to
calculate their heightswould be easy, because

 the weighting functions could then be extremely simple, viz. unity.

The finite-volume method emerges

CHT15 Rutgers U May, 2015

Why was this lucky?

Because, Suhas Patankar was in the audience; and **listening!**

The next day he told me that he had written, overnight, a small Fortran program which embodied my suggestions;

and they seemed to work!

From that day on, he and I, and soon my other students (Akshai Runchal and Micha Wolfshtein among them) entirely abandoned integral-profile methods.

The finite-volume method (**our** version, that is) had lurched clumsily into life!

But that was not all!

- Our first FVM application was the **2D boundary layer**. The **computer program**, soon published, enabled researchers at Imperial College and elsewhere to test **turbulence models** for wakes, jets and other **parabolic** flows.
- The FVM was just as useful for elliptic flows. Runchal and Wolfshtein used it for the vorticity~stream-function equations of 2D flows. Whereafter, Caretto, Tatchell, Gosman and I began to solve for pressure and velocities directly.
- I had developed the SIVA (= Simultaneous Variable Adjustment) method for this. But this was swept into near-oblivion when Suhas returned in a post-doctoral capacity in 1971. Soon was unleashed the 'SIMPLE Tsunami'.
- We both co-authored the publication, but it was his perceptive study of the works of Harlow and Chorin which led him to propose the Semi-Implicit Method for Pressure-Linked Equations, which the world soon adopted. End of Part2.

Part 3 . Algorithmic novelties

The final service which Suhas did me was...

to move to Waterloo.

The consequence was that I had to become a programmer myself!

He soon replaced **SIMPLE** with **SIMPLER**; I went a different way with **SIMPLEST**, then on to **IPSA** for coupled Navier-Stokes equations, to **PARSOL** and to **simultaneous solid stress**.

And there were new computer programs too, starting with **GENMIX** and leading to **PHOENICS**.

All used, of course, the Finite-Volume ;and the **segregatedsolution** procedure introduced by SIMPLE.

But the contest **SIVA** *vs.* **SIMPLE**, *i.e.* Simultaneous *vs.* Segregated, was not yet over.

Often they can best be **combined** as we shall see.

IPSA (Interphase Slip Algorithm) has elements of both SIMPLE and SIVA

CHT15 Rutgers U May, 2015

IPSA solve 9 fields of variables: p, r1, r2, u1, u2, v1, v2, w1 and w2 in SIMPLE-like segregated manner.

But frictional interactions between u1 and u2, v1 and v2,*etc.* are handled by SIVA-like **partial-elimination**.

It is **2-phase** IPSA which is built into PHOENICS; but in a geyser water can flow up and down at the same location. What then?

One way: treat upward and downward-flowing water as **separate phases**. So now there are 3.

How to solve? Use more **segregation**; and further **partial elimination**.

The principle solves many problems; *e.g.* ...

Segregation applied to PARSOL (partially solid cells)

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

PARSOL treats Cartesian cells cut by curved surfaces thus -->

But what about doubly-cut cells like this, with **two velocities** for the right wall?

The obvious (seen first in 2014!) answer is: **segregate** a bit more, *i.e.* solve **upper** velocities on **even** sweeps and **lower** on **odd** ones. It works.

For **conjugate heat transfer**, there are **three** temperatures per cell: 2 fluid and one solid. SIVA-type partial elimination solves for them between SIMPLE type field-wise solver sweeps. But the odd-even trick still works.

Another application of odd-even segregation: free-surface flows

CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

Free-surface flows are often seen as **volume-offluid** problems; yet they are **more challenging**; for the fluids may cross the cut-cell walls with **two very different velocities**.

How solve with a code which can compute only one value for each cell? By **segregation** again. Attend to the **above-surface** and **below-surface** velocities at cut-cell faces respectively during **odd-and even-number visits** to the solver.

And make SIVA-type adjustments to the not-attended-to variable **between** visits.

The positions of the facets defining the **surface must be updated** to fit each new velocity field; but that needs only careful interpolation.

A last example; simultaneous fluid flow and solid stress for cut-cell geometries CHT15 Rutgers U May, 2015

CHT for heat-exchanger design; past, present and future

The capability of PHOENICS to compute **stresses in solids** simultaneously with **fluid flow** is rarely exercised because:

- some people still believe solid stresses need finite elements; and
- curved surfaces seemed to require unstructured grids, as shown:

In solids, velocities are replaced by displacements and pressure by dilatation. **Were PARSOL** to be used, some cells would have both sets. But why not? They are not unlike fluid-surface cells.

Odd-even segregation would alternate **red** with **blue** solutions, with SIVA-like links between them.

The last slide: putting it all together: Esoteric + SimScene = Accessible

CHT15 Rutgers U May, 2015

Heat-exchanger SimScenes enable designers to use CHT/CFD; so their equipment performs as predicted; and is cheaper to build.

A free-surface SimScene will be able to activate the odd-even segregation algorithm, the details of which its user needs know nothing, as in the **liquid-ring pump** on the right (click to activate).

A **Fluid-Structure-Interaction** SimScene will predict stresses in curved bodies with Cartesian Grids.

And a **multi-phase IPSA** SimScene will put SIVA and SIMPLE together, behind the scenes, to simulate the Old Faithful geyser.

CHT for heat-exchanger design; past, present and future

Thank you for your attention