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Abstract 
The proposed two-dimensional (2-D) numerical wave model in the vertical plane is 

based essentially on two added source terms for the mass conservation and the momentum 
transport equations. The expression of the mass source term depends on the specified 
generated wave such as linear monochromatic wave and nonlinear solitary wave. This source 
term is added for the equation of mass conservation in the internal flow region. To reduce 
wave amplitude at the end of the active domain, a friction force term is added to the vertical 
velocity component. An absorption function, decreasing linearly in the horizontal direction, is 
applied to avoid wave reflection at outlet boundary. The free surface evolution is calculated in 
terms of Volume Of Fluid (VOF) fraction representative of the cell occupied by the fluid. The 
convective equation describing the fluid fraction is modified to take into account the non-zero 
divergence mass conservation equation.  

The proposed model is implemented in the PHOENICS code (Parabolic Hyperbolic Or 
Elliptic Numerical Integration Code Series). For small amplitude wave, propagating on 
constant water depth, the comparison of numerical and analytical results showed that the free 
surface and vertical distribution of the velocity components are accurately predicted. For 
solitary wave, the proposed model generates the free surface profiles induced by this wave 
correctly with small discrepancy in the tailing edge of the wave. The propagation of the 
solitary wave in constant water depth indicated that the wave preserved its permanent form 
and the same wave velocity. 

1- Introduction 
In laboratory, wave tank has been widely applied to study coastal structures, beach 

profiles, and other related coastal phenomena. Nowadays, an alternative to physical modeling 
at laboratory scale is the development of numerical wave tank. Within the numerical model it 
is easy to test various wave conditions compared to the rebuilding of physical models.  

For inviscid fluid, the Laplace equation and the nonlinear free surface boundary 
conditions are usually solved numerically, using the boundary element method to investigate 
shoaling of solitary waves up to overturning (Grilli and al., 2001). For most of coastal 
engineering applications, the Boussinesq equations is used when vertical variation is assumed 
negligible. This model assumes that the wave amplitude is small enough to ignore the wave 
dissipation effects by wave breaking (Wei and al., 1999).  

To take into account linear or nonlinear water wave propagation with energy 
dissipation, the Navier-Stokes equations is used. In this model, internal wave generation 
methods have been widely used to simulate the wave propagation in two dimensions (Lin and 
al., 1999). This internal wave generation is subdivided in line source and source function 
methods and permits to avoid the interference with the wave boundary. 

The line source method generates waves at a single point along the wave propagation 
direction. In this method, waves are generated at both sides of the source point by adding, at 
each time step, to the water surface elevation the corresponding values that are computed by 
the model equations. Larsen and al. (1983) was the first who used the line source method in 
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the Boussinesq equations and suggest that the phase velocity is appropriate for the water mass 
transport. 

Madsen and Larsen (1987) were the pioneers to use source function, for wave 
generation, in the Laplace equation. This method requires several grids to overcome the 
discontinuity of the source at the wave generation line. This method employs a source term 
added to the governing equations, either in the form of a mass source in the continuity 
equation or an applied pressure forcing in the momentum equations (Wei and al., 1999). 
Based on internal source added to the Navier-Stokes equations model, Kawasaki and al. 
(1999) show that the non-linear wave generator can be used to study breaking over submerged 
breakwater. 

The waves can also be generated using a wave-maker, which is modeled by a moving 
object. The wave-maker displacement is determined according to the wave-maker theory 
(Dong et al., 2001). Another elementary generation method is to impose at the upstream 
boundary the free surface elevation and the velocity components corresponding to the desired 
generated wave (Lin and al., 1998).  

To prevent the propagation of the wave toward open boundary, the common methods 
are the use of a radiation condition, with active or passive wave absorbers. Another type of 
dissipation zone is based on an extra damping pressure added to the free surface, which 
opposes to the vertical wave velocity. A disadvantage of such damping zones is the increase 
of the number of computational cells to cover the zone added to the initial domain. Especially, 
in three dimension models, many computational cells have to be added outside the real 
computational domain, Kawasaki and al. (1999). 

This study will focus on two dimensions numerical linear and nonlinear waves 
generation in viscous water tanks. The numerical results are compared to analytical solutions 
describing the symmetric and asymmetric behavior of linear and nonlinear waves. The 
proposed model is integrated in the Navier-Stokes solver : the PHOENICS code. After 
validation of the generation method in simple cases, the extension of this method in three 
dimension and the investigation of wave structure interaction are straightforward.  

2- Governing Equations and Boundaries Conditions 

2-1 Transport Equations 
To generate numerically a given wave, a mass source function is required for the mass 

conservation equation. In two dimensional, incompressible unsteady flow we have: 
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Where, u and w are the velocity components respectively in x and z directions. 
s(t) is an added mass source term depending on the type wave to be generated.  

For monochromatic wave, assuming that the wave is generated at x = 0, the free 
surface elevation function of the time t is given by the following equation:  
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For solitary wave, assuming that the wave is generated at x = 0, the local free surface 
elevation function of the time t is given by the following equation:  
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With sech() is the hyperbolic secant; H : wave height; C the wave celerity given by : 
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The parameter k is given by : 
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The wavelength of a solitary wave is theoretically infinitely long. However for 
practical purposes we can define an arbitrarily wavelength as : 

k
π

λ
2

=  (6) 

The apparent wave period is defined as :  
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  The distance xs is introduced to make the source function is negligible at initial time : 
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This implies that 99 % of solitary mass can be generated by the source function at        
t = 0. According to Lin and Liu (1999), the corresponding mass source term is given by : 
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With, C the wave celerity and A the area of the source region. 
It is noted that the factor “2” in Eq. (9) denoted that the wave energy is transported in 

both directions from the wave generation line source. 
In laminar viscous flow, the dynamic transport equation describing the velocity 

component in the horizontal direction is:  
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A dissipation zone is used for damping the wave amplitude at the outlet boundary. In 
this region, a friction source term is added to the vertical velocity component within the 
momentum transport equation in the vertical direction: 
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With : P the pressure; ν : kinematic viscosity; ρ : fluid density; g : gravitational acceleration. 
γ : is a dumped function equals to zero except for the added dissipation zone.  

βαγ += x)x(  (12) 

Where, es xxx <<  (subscripts s, e mean starting and end point of damping zone).  
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α : is the control parameter  
The dumping force in horizontal direction is not considered (in Equation 10) in order 

to avoid the velocity dumping in the uniform horizontal flow. 
The mass source term introduce the following source term in the VOF transport 

equation, 
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A cell with an F = 0 refers to en empty cell, the one with 0 < F < 1 is a surface cell and a cell 
with F = 1 is a water full cell, Hirt and al. (1981).  

The wave propagation is considered as a two phases flow involving water phase and 
air phase. We assume that the sliding between the two phases is negligible and that there is no 
mass exchange across the interface. Hence, the velocity field at the free surface is continued.  

2-2 Boundaries conditions 
The following boundaries conditions are considered along with these transport equations: 

• For the free surface boundary condition, the normal stress is imposed by setting the 
pressure P equal to the atmospheric pressure Patm  (P = Patm). 

• For open boundary condition, a dissipation zone is added in order to avoid wave reflection 
at each end. Within such zone it is advantageous to consider in addition to the dumping  
friction force, a numerical dissipation by applying a coarse grids in the dissipation zones. 
The Neumann boundary condition is specified at the end of each dissipation zone.   

The initial condition considered is a still water with no wave or current motion.  
The PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series) 

code, is well suited for the implementation of the above models (Eqns 1 to 8).  Within this 
code the flow velocity and free surface evolution are determined by the finite volume solution 
(Patankar, 1980). The Van Leer scheme with Total Variation Diminishing (TDV) approach is 
adopted in order to overcome the discontinuities of flow variables at the interface.  

3- Simulations Results 

3-1 Regular wave 
The computational domain consists of an inner domain of L1 = 6 m, and two sponge 

layers with a thickness of S = 5 m at the outside boundaries (figure 1). The length L2 of the 
source region is taken 5% of the incident wavelength. The absorption function is linearly 
decreasing in the horizontal direction. 
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Figure 1 : Computational domain for generating monochromatic incident 
wave. 
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The still water depth at the channel is d = 0.2m. The incident wave have the following 
characteristics : H = 0.01 m, T = 1 s, d = 0.2 m, C = 1.21 m/s, k d = 1.04 (k is the wave 
number). 

A uniform mesh size in x direction is used : ∆x = λ/34. In the vertical direction a non 
uniform mesh is considered with minimum ∆z = H/25 around the free surface. For this linear 
wave, a time step of ∆t = T/60 is used.  

Figure 2 shows the free surface elevation at t = 4 T and t = 6T, along the wave tanks. 
The generated unidirectional monochromatic wave profiles are accurately reproduced 
compared to linear wave theory (Bonnefille, 1992). Both wave amplitudes and wavelengths 
are almost equal to the incident values. Also, wave energy is dissipated at the sponge layer 
almost perfectly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to explain the wave generation mechanism with internal mass source we 
represented in figure 3-a to f, the velocity field and free surface profile around source region 
during one period. When t = 3.0 T and t = 4.0 T, figure 3 a) and f), s(t) = 0 and the velocity 
divergence is equal to zero. Hence, the velocity field is almost identical to linear theory except 
in the center of the source region where the computed velocity has no physical meaning.  

 
At t = 3.2 T, figure 3 b), we have an upward motion of the free surface associated to 

the increase of mass source. The added mass produce the desired free surface shape because 
the length L3 of the source region is very narrow (L2 = 5% λ) as shown in figure 3 c).  

 
From t = 3.6 T to 4.0 T, figure 3 d-e), the mass source decreases, and the free surface 

is sucked into the source region which induces returning flow. We note that since the incident 
wave is periodic, the velocity and free surface are almost identical at t = 3.0 T and t = 4.0 T. 
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Figure 2 : Comparison between numerical free surface elevation and analytical 
results a) t = 4.0 T; b) t = 6.0 T. 
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Fig 4 shows the free surface and velocity field under a sinusoidal wave along one 
wavelength at time t = 5 T. The direction of wave propagation is from left to right; under the 
crest the fluid velocity is also in that direction. However, under the through the velocity is in 
the negative x direction.  
 
 
 
 

Figure 3 : Numerical free surface elevation and velocity field around source region at :  
a) t = 3.0 T; b) t = 3.2 T; c) t = 3.4 T; d) t = 3.6 T; e) t = 3.8 T; f) t = 4.0 T. 
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Figure 5 : Numerical and analytical velocity profiles at different sections : 
 a) x = 12.24 m; b) x = 12.40 m; c) x = 12.85 m; d) x = 13.00 m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to verify the accuracy of the proposed model, the numerical velocity profiles 
at different locations (a to c shown in fig 4), are compared to the linear theory solutions. The 
numerical and theoretical results of the vertical distribution of the horizontal and vertical 
velocity components are represented in Fig 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the cases where the free surface displacement is equal to zero, the fluid particles 
moves upward (fig. 5-a). The vertical velocity component decreases exponentially from free 
surface to the bottom. After 0.13 λ (fig. 5-b), the direction of the particles fluid velocity is 
inclined from the bottom and opposite to the wave propagation direction. After a one half 
wavelength (fig 5-c), the fluid particles moves downward. This fluid particle displacement is 
symmetric to that observed in figure 5-a). A symmetric behavior is also observed between 
figure 5-b) and 5-d) due to linear character of the sinusoidal wave. The comparison shows that 

Figure 4 : Numerical free surface elevation and velocity field for unit 
wavelength at t = 5 T. 
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the numerical results follow the linear solution satisfactory except for location c) where small 
disagreement is observed due to possible small phase error.  

3-2 Solitary wave 
In order to validate the proposed generation method for nonlinear wave, we consider 

the propagation, of the solitary wave in constant water depth, d = 0.20 m. The offshore 
incident solitary wave height is H = 0.01 m (the ratio of wave height to water depth ratio is 

=
d
H  0.05).  

The total horizontal length of computational domain is 16.12 m including 6 m for the 
dissipation zone. The numerical computation is conducted with NX = 241 and NZ = 116 grids 
respectively in x and z directions. The finest grid size in horizontal and vertical directions are 
chosen as ∆x = 0.05 m and ∆z = 0.0004 m, respectively. The time increment is ∆t = 0.013 s. 
At t = 2.13 s (fig 6) we have intercepted the leading and trailing edges of two solitary wave 
generated by the mass source function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The numerical free surface profile is accurately reproduced except for the trailing edge 
where small discrepancy is observed. The numerical free surface and velocity field for this 
solitary wave is represented in figure 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 : Numerical and analytical free surface elevation for solitary wave at 
t = 2.13 s. 
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Figure 7 : Numerical free surface elevation and velocity field for solitary 
wave at  t = 2.13 s. 
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The two generated waves is propagating in opposite direction. The direction of the 
velocity vector at the crest following the direction of propagation. Due to nonlinear character 
of solitary wave, no symmetric behavior is observed as the sinusoidal wave. We note that the 
velocity in the vicinity of the source region is always directed upward and has no physical 
meaning. Fig. 8 shows the evolution of a solitary wave propagating in a channel with constant 
water depth.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The wave preserves the permanent shape and propagates with the same wave velocity. 

In fact, with the same time interval, the distance traveled by wave is identical.  

4- Conclusions 
The proposed numerical wave generation model based on an added mass source term 

in internal flow region was proven to be able to generate small amplitude and solitary waves. 
For monochromatic wave, the wave profiles and the velocity profiles are similar to those of 
the analytical solutions. However, Small phase difference in free surface is noted which 
induce small discrepancy in the horizontal velocity component for one half of the wavelength. 
The free surface profile, for solitary wave, is also accurately predicted and his permanent 
shape is preserved during the propagation period.  

Based on previous research works from the specialized literature, a wide validation 
process will be performed to demonstrate the accuracy of the numerical wave generator 
model. This generation method is also very useful for the practical computation of wave-
current interaction wave-structure interaction (wave run-up and wave breaking).  
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