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Abstract 
A numerical model has been developed to solve the unsteady Navier–Stokes equations 

together with a convective equation describing the flow surface profile and with the 
appropriate boundary conditions.  In order to generate nonlinear solitary wave on constant 
depth, an appropriate mass source term is added for the equation of mass conservation in the 
internal flow region. This model is implemented in the industrial Computational Fluid 
Dynamics code : PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code 
Series). The numerical wave generation is validated by comparisons of numerical results with 
the analytical solutions and show that the solitary wave is very accurately generated. The 
propagation of the solitary wave in constant water depth indicated that the wave preserved its 
permanent form and the same wave velocity. 

This model is then used to simulate the nonbreaking runup and rundwon caused by the 
solitary wave passing over impermeable steep plane beach. The numerical results are 
compared with experimental data of  Lin and al. (1999) and show that the free surface profiles 
and vertical velocity component are accurately predicted during the runup and rundown 
process. However, the comparisons of horizontal velocity component show small discrepancy 
during the rundown process and larger discrepancies during the runup process.  

1- Introduction 
The design and the protection of beaches and harbors require testing of these coastal 

structures for different wave conditions. To study wave and structure interaction near 
shoreline region, solitary waves are used which approximately model steep waves on beaches. 
In coastal engineering, the solitary wave is also used to represent long free-surface waves 
such as wave generated by wind (wind waves) or earthquakes (tsunamis). In the early 
research, physical model is commonly used to study ocean wave propagation, shoaling, 
breaking or runup over a slope.  

Over the past fifty years, the wave structure interaction has been the object of 
numerous theoretical studies. Using a nonlinear transformation of shallow water wave 
equation, Synolakis (1987) obtained analytical solution for the maximum runup height for 
non breaking solitary waves propagating over constant depth and determined breaking 
criterion during runup and rundown processes.  

More recently, numerical wave flumes (2D) have been developed to reproduce wave 
generation and propagation. Grilli (1994), used a nonlinear potential flows based on Boundary 
integral formulations to study wave profiles during breaking of solitary wave on plane beach 
with gradual and steep inclined plane. 

The Boussinesq equations have been widely employed to study runup and rundown 
along sloping beach. The standard form of these equations can be derived from Euler 
equations ignoring rotational and dissipation effects (Kim, 2006). This model include the first 
order effects of non linearity and dispersion and are valid for weakly nonlinear and dispersive 
waves. This approach is useful for large-scale computations. Zelt (1991) used a Lagrangian 
form of this model to reproduce the shoreline movement induced by solitary propagating 
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wave. The Boussinesq equations has been extended to include higher order effects of non-
linearity and dispersion and nonlinear of this formulation in order to study wave shoaling and 
runup (Lynett and al. 2002). Using energy velocity instead of phase velocity, Kim (2006), 
show that the source function in the horizontally two-dimensional wave models based on 
Boussinesq equations is identical to the source function in the three-dimensional continuity 
equation. Maiti (1999) studied interaction of solitary waves with impermeable inclined walls 
and evaluate pressures and forces during the reflection by prescribing the motion of the piston 
wave maker. In later study, the boundary conditions at upstream are functioned as a 
wavemaker to generate the desired conditions 

However, this model is not capable to represent accurately highly nonlinear wave 
breaking processes, air entertainment and turbulence. Models taking into account the vertical 
variation of the flow can better reproduce the breaking waves where wave becomes very 
asymmetric. To take into account energy dissipation over the entire range of water depth, the 
complete Navier-Sotkes (N-S) is used for non breaking solitary wave on steep plane beach 
and Reynolds-averaged Navier-Stokes (RANS) for breaking wave on gradual plane beach, 
Lin and al. (1999). The breaking of cnoidal wave in a sloping plane beach is investigated by 
Lin and Liu (1998) by developing numerical model for predicting turbulence characteristics 
for shoaling. In the later study, the wave is generated directly without using the wavemaker 
theory by prescribing the water surface elevation and mean velocity components in both 
horizontal and vertical directions on the upstream boundary. The pressure is unknown but can 
be computed from continuity equation. Based on (RANS), Park and al. (2003) developed a 
3D model for investigate nonlinear wave interaction with arctic structure and show that the 
flow viscosity affects free surface profiles. 

In this paper, we are interested on generation and propagation of solitary wave over 
uniform slope by Navier-Stokes solver with the Volume of Fluid Fraction (VOF) method 
which is capable to model fully overturning waves even with fluid re-attachment. The 
PHOENICS code is used to implement the additional source terms relative to the equation of 
mass conservation and the momentum equation in the vertical direction. With this code, more 
complicated problems such as the addition of turbulence in breaking wave and three-
dimensional flow induced by wave structure interaction can be investigated. 

2- Governing equations 

2-1 Physical problem description 
In this study, we consider the propagation, in the vertical plane, of the solitary wave in 

undisturbed water depth, d = 0.16 m, and passing over a plane beach of slope angle β = 30° 
(figure 1).  
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The toe of the beach is located at xh = 8.12 m from the x origin. The offshore incident 

solitary wave height is H = 0.027 m (the ratio of wave height to water depth ratio is =
d
H  

0.17). The initial shoreline is located at Qi and after maximum runup, the shoreline is located 
at Qm. At this point, the wave have has a maximum runup denoted by Rm. Lin and al. (1999) 
conducted a set of experiments over this geometric configuration in a wave flume that has a 
dimension of 30 m long, 0.6 m wide and 0.9 m deep. The free surface profiles are obtained by 
the PIV (Particle Image Velocimetry) system and the velocity components are obtained by 
determination of the seeding particle displacements. Two measurement section located at x1 
= 8.03 m and x2 = 8.17 m are used to validate the simulated velocity components profiles.  

2-2 Transport Equations 
To generate numerically a given wave in two-dimensional flow, a mass source 

function is required for the mass conservation equation and a friction source for dumping 
wave at open boundary is added in the vertical momentum equation. Assuming 
incompressible fluid, the modified mass conservation equation is written as : 
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Where, u and w are the velocity components respectively in x and z directions. 
s(t) is an added mass source term depending on the type wave to be generated.  

For solitary wave, assuming that the wave is generated at x = 0, the local free surface 
elevation function of the time t is given by the following equation:  

[ ])tCx(khsecH)t( s −= 2η  (2) 

With sech() is the hyperbolic secant; H : wave height; C the  wave celerity given by : 

dgC =  (3) 

 The parameter k is given by : 

34
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The length of a solitary wave is theoretically infinitely long. However for practical 
purposes we can define an arbitrarily wavelength as : 

k
π

λ
2

=  (5) 

The apparent wave period is defined as :  

C
T λ

=  (6) 

 The distance xs is introduced to make the source function is negligible at initial time : 

d/H
dxs

4
=  (7) 

This implies that 99 % of solitary mass can be generated by the source function at        
t = 0. According to Lin and Liu (1999), the corresponding mass source term is given by : 
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In laminar viscous flow, the dynamic transport equation describing the velocity 
component in the horizontal direction is:  
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A dissipation zone is used for damping the wave amplitude at the outlet boundary. In 
this region, a friction source term is added to the vertical velocity component within the 
momentum transport equation in the vertical direction: 
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With : P the pressure; ν : kinematic viscosity; ρ : fluid density; g : gravitational acceleration. 
γ : is a dumped function equals to zero except for the added dissipation zone.  

βαγ += x)x(  (9) 

Where, es xxx <<  (subscripts s, e mean starting and end point of damping zone).  
α : is the control parameter  

The dumping force in horizontal direction is not considered (in Equation 9) in order to 
avoid the velocity dumping in the uniform horizontal flow. 

The mass source term introduce the following source term in the VOF transport 
equation, 
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A cell with an F = 0 refers to en empty cell, the one with 0 < F < 1 is a surface cell and a cell 
with F = 1 is a water full cell, Hirt and al. (1981).  

The wave propagation is considered as a two phases flow involving water phase and 
air phase. We assume that the sliding between the two phases is negligible and that there is no 
mass exchange across the interface. Hence, the velocity field at the free surface is continued.  

2-3 Initial and boundary conditions 
To solve the governing equations of the N-S model, four boundary conditions are 

needed :  free surface, bottom, upstream and downstream boundaries. 
The free-surface boundary conditions consist of kinematic and dynamic boundary conditions. 
The kinematic free surface boundary condition states that the fluid particles of the free surface 
always stay on the free surface at any time and is written as : 
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where η(x,t) is the water surface elevation.  
The dynamic free surface boundary conditions requires that, along the free surface 

boundary, the normal stress is equal to the atmospheric pressure and the tangential stress is 
zero. 

The no-slip boundary condition is imposed on the solid boundaries (the bottom and the 
inclined plane of the beach). 

At the open boundary condition, a dissipation zone is added in order to avoid wave 
reflection at this region. Within such zone, located at the left of the computation domain, it is 
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Figure 2 : Comparison of the experimental, analytical and numerical solitary wave 
profiles at t = 2.27 s. 
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advantageous to consider in addition to the dumping  friction force, a numerical dissipation by 
applying a coarse grids in the dissipation zones. The Neumann boundary condition is 
specified at the upstream and downstream boundaries.   

The initial condition considered is a still water with no wave or current motion.  

2-4 Numerical scheme in the PHOENICS code 
In the PHOENICS code, the governing equations are discretized using a finite volume 

method applied to a staggered Cartesian grid system (Patankar, 1980). All the velocity 
components are defined at the midpoints of the cell faces; whereas, the scalar flow variables 
(pressure and water surface elevation) are defined at the center of the cells. 

The implicit method is used to discrete the time derivative. The convection terms are 
discretized by hybrid scheme. To satisfy the continuity equation, pressures are iteratively 
adjusted in each cell until that the discrete divergence in the continuity equation is zero. Then, 
the velocity changes caused by each pressure correction are added to the temporary velocity 
field. The Van Leer scheme with Total Variation Diminishing (TDV) approach is adopted in 
order to overcome the discontinuities of flow variables at the interface.  

3- Numerical results and discussion 

3-1 Solitary wave generation in constant depth 
Preliminary numerical tests are made to test the generation method with addition of 

internal mass source functions to the mass conservation. The total horizontal length of 
computational domain is 8.62 m including 6 m for the dissipation zone. The numerical 
computation is conducted with NX = 161 and NZ = 101 grids respectively in x and z 
directions. The finest grid size in horizontal and vertical directions are chosen as ∆x = 0.0125 
m and ∆z = 0.0018 m, respectively. The time increment is ∆t = 0.0067 s. 

Due to the differences between the lengths in constant depth region used in numerical 
and experimental cases and the generation mechanism used, results are synchronized at the 
time where the incident wave crest crossed the location x = 7.45 m in the computation domain 
(for t = 2.27 s). For this time origin, no adjustment is made to the experimental propagation 
time given by Lin and al. (1999).   

The numerical results for free-surface elevations at this time are shown in Fig. 2. It is 
noted that the numerical results differ slightly from the PIV data. At this time, the shape of the 
solitary wave profile is not affected by the sloping beach and is similar with the theoretical 
solitary wave solution.  
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Figure 3 : Numerical free surface profile and velocity distribution induced by solitary 
wave at t = 2.27 s. 

 

The velocity field induced by the solitary wave is shown in figure 3 and indicated that 
the wave is propagating from left to right. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The velocity below the wave crest is greater than in the region where the free surface 

is equal to the undisturbed water level. This proves that solitary wave is very well generated 
by the proposed N-S model. Using mass source function method for the generation of solitary 
wave, numerical tests show that the reflected wave will not interfere with the wave generation 
process. This implies that this generation method can be used for long duration simulation of 
coastal wave dynamics when reflected waves are present.  

3-2 Interaction of solitary wave and steep beach 
From the experimental results of Lin and al. 1999, the interaction between solitary 

wave and a steep beach is characterized by three phases : the first runup, the rundown and the 
second runup. To analyze the runup and rundown mechanism we have reported in figs 4 (a to 
f) the simulated free surface profiles together with the computed velocity field at different 
stage of the runup and rundown processes.  

Fig 4-a) shows the velocity field at t = 2.97 s. In the start of the first runup process, the 
fluid particles climb up parallel to the slope. The velocity is maximum at the shoreline and 
decreased away from the shoreline. At this time, the comparison of the N-S numerical free 
surface profiles and the experimental results show that the numerical results overestimate the 
free surface profile near the shoreline zone. 

At the instance when the wave almost reaches its highest runup point Rm (t = 3.17 s), 
the numerical results indicates that Rm = 0.071 m : 2.63 greater than the wave height H (fig. 4-
b). At this time, the major fluid particles are reflected against the sloping beach except very 
small region in the vicinity of the shoreline where the particles still moves upward. The 
comparison between numerical and experimental measurements indicates that the free surface 
elevation are accurately predicted. 
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A t = 3.37 s, the wave is running down on the slope (fig 4-c), and at t = 3.77 s the 
wave is approaching its maximum rundown point (Fig 4-d).  After the wave reaches its 
maximum rundown point, the secondary runup occurred. The secondary runup process is 
shown in fig 4-e (t = 3.97 s) and fig 4-f (t = 4.17 s). The secondary maximum runup point is 
mach smaller than the first one. In fact, at this time the quasi totality of the wave has been 
reflected by the steep slope. 

In order to analyze the three phases induced by the interaction of solitary wave and 
inclined plane, we reported in figs 5 to 8 the vertical distribution of the velocity components 
at the measurements section x1 (in the constant water depth region) and x2 (on inclined plane 
of the beach). The numerical velocity profiles are compared to the experimental data of Lin 
and al. (1999). 

At section x1, and during the runup process, the horizontal velocity component u is 
nearly uniform with positive values (fig 5). At the maximum runup, u is negative due to 
running down motion of fluid particles in constant water depth and on the beach. However, at 
section x2, the vertical distribution of u is non uniform; it increase linearly from the inclined 
plane to the free surface (fig 6). The comparison of numerical and experimental results show 
that, the horizontal velocities u are underestimated during the runup process. The non uniform 
vertical distribution of u on the beach indicates that the shallow water equations assuming the 
long wave approximation can not be used to predict accurately the runup process.  

At section x1, and during the runup process, the vertical velocity component w is 
negligible (fig 7). During the rundown process, strong vertical variations of w component is 
observed. At section x2 (fig 8) and at the start of the secondary runup (t = 3.97 s), the vertical 
motion is so strong that the magnitude of vertical velocity component w near free surface is 
much larger than the horizontal velocity component u (fig.6 and 8). The comparison of 
experimental and numerical vertical velocity profiles is better during the rundown process at 
section x1 and x2. 

Numerical tests are conducted assuming that the energy dissipation due to viscous is 
considered as negligible. Hence, by neglecting the diffusion terms in the momentum equation 
the N-S equations are reduced to Euler’s equations for inviscid fluids. Numerical results show 
that, for non breaking wave runup, viscous effect is not important.  
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Figure 4 : Numerical and experimental free surface profile and computed velocity field in the 
vicinity of the beach at different time : a) t = 2.97 s; b) t = 3,17; c) t = 3,37; d) t = 3,77;  

 e) t = 3,97 f) t = 4,17 . 
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Figure 5 : The comparison of horizontal velocity between the experimental  
measurements and the numerical results at section x1 for different times.  

z (m) 
  

u (m/s) 
 

z (m) 
  

u (m/s) 
 

Figure 6 : The comparison of horizontal velocity between the experimental  
measurements and the numerical results at section x2 for different times.  
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Figure 8 : The comparison of vertical velocity between the experimental  
measurements and the numerical results at section x2 for different times.  

Figure 7 : The comparison of vertical velocity between the experimental  
measurements and the numerical results at section x1 for different times.  
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4- Conclusion 
 

Based on the Navier–Stokes solver of the PHOENICS code, the generation and 
propagation of solitary wave over impermeable steep beach are computed and analyzed. 
Adding internal mass source function to the mass conservation equation generates the solitary 
wave and a friction force is added to the vertical momentum equation to avoid reflection at 
open boundary. The comparison of the generated solitary wave and theoretical wave show 
that this generation method predicts very accurately the wave celerity and its permanent 
shape.  

In order to validate the developed model, the nonbreaking runup and rundown 
processes along a steep beach is considered. The comparison between experimental 
measurements and numerical computations of free surface profiles and vertical velocity 
component demonstrate the overall agreement of these flow variables. The vertical velocities 
are accurately predicted, however, some disagreements are observed for horizontal velocity 
component during the runup process. In future study we propose to analyze the effect of 
turbulence on the breaking wave along a gradual beach.  
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