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 This article reports on the extension of the existing PHOENICS VOF (volume of fluid) option to simulate three 

phase flows, such as those encountered in applications involving three different immiscible fluids. Examples 

include systems involving combinations of liquids and gases with differing densities, like those found in the 

water/oil/air interfaces of an oilfield separator and the liquid-steel/liquid-slag/gas interfaces of a gas-stirred 

metallurgical ladle. The extension to three fluids involves the solution of a conservation for an additional colour 

(or indicator) function, C3, to represent the third phase; and a modification of the surface-tension force in the 

mixture momentum equation to handle the three distinct fluids.  

The PHOENICS 3-phase VOF implementation is tested by its application to two rising bubble cases, one for a 

bubble rising in a liquid column, and the other for a bubble rising in a column with two stratified liquids. The first 

case is important for verifying that the VOF extension produces results that are in agreement with published 

numerical results for the simpler two-phase system. The second test case is qualitative in the sense that it 

simulates a full three-phase system to investigate the bubble rise in response to changes in the physical 

properties of each phase. 

The transport equation for C3 has the same form as the existing colour function C1 used in two-phase VOF 

simulations, i.e.: 

𝜕𝐶3

𝜕𝑡
+ ∇ ∙ 𝑉𝐶3 = 0                           (1)  

The option exists in PHOENICS to solve this equation in conservative or in non-conservative form, depending on 

the physical problem. The following algebraic equation enforces volume continuity and links the two colour 

functions:     ∑ 𝐶𝑛 = 13
𝑛=1  , where Cn is the colour function of phase n.  

The physical properties of the resulting mixture are computed under the above constraint by using equations 

of the form:  𝜙 = ∑ 𝐶𝑛
3
𝑛=1 𝜙𝑛 , where 𝜙 denotes the density, kinematic viscosity, specific heat capacity, thermal 

conductivity and volumetric expansion coefficient 

The PHOENICS two-phase VOF method uses the standard continuous surface force (CSF) approach of Brackbill 

et al (1992) to introduce surface-tension forces into the momentum equations in form of an equivalent body 

force, which in case of a two-phase system, takes the following form: 𝐟𝑐𝑎𝑝 = 𝜎𝜅𝑖𝛿𝐧𝑖, where 𝜎 is interfacial tension, 

𝐧𝑖 = −∇𝐶𝑖/|∇𝐶𝑖|  is unit normal vector at the interface pointing out of the 𝑖-phase, with 𝐶𝑖 the colour function of 

the 𝑖-phase,  𝛿 = |∇𝐶𝑖| is the Dirac delta function centred at the interface and 𝜅𝑖 = −(∇ ⋅ 𝐧𝑖) is the interface 

curvature.  
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The drawback of the CSF approach is that for different densities of adjacent phases, the capillary force 

introduced into the momentum equations produces an unsymmetrical distribution of the acceleration field 

relative to the interface location. For example, the acceleration 𝐟𝑐𝑎𝑝/𝜌, where 𝜌 is the local VOF phase density, 

is much higher in a less dense phase and vice versa. The CSF approach will lead to a thinning or thickening of the 

smooth transitional region between phases, depending on the direction of the vector 𝐟𝑐𝑎𝑝. If 𝐟𝑐𝑎𝑝 is pointing into 

a less dense phase, then the interface tends to thicken with time, whereas if it is pointing into a denser phase, 

the interface will become thinner with time. This problem has been resolved by Brackbill et al (1992) for two-

phase systems by using density scaling of the CSF (DS-CSF), as follows: 

𝑓𝑐𝑎𝑝 = −𝜎𝜅𝑖∇𝐶𝑖
𝜌

〈𝜌〉
                                          (2) 

where 〈𝜌〉 = (𝜌1 + 𝜌2)/2 is the average density between adjacent phases 1 and 2. This practice results in a 

symmetric distribution of the acceleration with respect to the interface.  

In this work, by following Tofighi and Yildiz (2013), the DS-CSF has been extended to three phases by splitting 

the resulting capillary force into three constituents, one per phase. Each of these phase-specific forces is given 

zby equation (2) above, but instead of using interfacial surface tensions, three phase-specific surface tensions 

𝜎n (where n = 1,2, 3) are used in these forces. This approach is valid only for three-phase systems, as will be 

discussed later. When focusing on a given phase n, the idea of density scaling is to treat the two others as a 

single n-adjacent phase with spatially varying density.  

By analogy with a two-phase system, but using now the density of the n-adjacent phase for the DS-CSF, the 

capillary force for a three-phase system can be computed as: 

𝑓𝑐𝑎𝑝 = ∑ 𝑓𝑛𝑐𝑎𝑝 =3
𝑛=1 − ∑ 𝜎𝑛𝜅𝑛∇𝐶𝑛

𝜌

〈𝜌〉𝛼

3
𝑛=1                                                       (3) 

where 𝐟n,cap is the equivalent of 𝐟𝑐𝑎𝑝 for phase n with 〈𝜌〉n = (𝜌n + 𝜌n-adjacent)/2. This formulation redistributes the 

surface forces across interfaces in such a way as to produce a symmetric acceleration. It remains to define the 

values of phase-specific surface tensions. The idea is based on the decomposition of the resulting force vector 

into three constituent phase-specific forces (see Tofighi and Yildiz (2013)). These phase-specific forces are then 

treated individually in the same manner as surface forces in two-phase systems, where only one type of interface 

is possible. For this purpose, the interfacial tension between phases n and 𝛽 is expressed through artificially 

introduced phase-specific surface tensions, so that 𝜎n𝛽 = 𝜎n + 𝜎𝛽 where:  

 {

𝜎1 = 0.5(𝜎12 + 𝜎13 − 𝜎23)
𝜎2 = 0.5(𝜎12 + 𝜎23 − 𝜎13)

𝜎3 = 0.5(𝜎13 + 𝜎23 − 𝜎12)
                                                          (4) 

One difficulty in three phase systems is the possibility of direct contact between all phases. However, these 

situations are accounted for automatically by the foregoing capillary-force decomposition into the sum of phase-

specific capillary forces. 

The flow considered is a two-dimensional bubble rising in a column of liquid, as defined by Hysing et al. (2009) 

as test case 2. This case is representative of industrial applications because it concerns a bubble with a density 

much lower than that of the surrounding fluid. The solution domain is illustrated in Figure 1; and the liquid 

(phase 1) properties are taken as ρ1=1000 kg/m3 and µ1=10 Ns/m2. The gas (phase 2) properties are set to ρ2=1 

kg/m3 and µ2=0.1 Ns/m2. The surface tension and gravitational acceleration are set to σ=1.96 N/m and g=0.98 

m/s2, respectively.  

Application to the 2-phase system of a bubble rising in liquid 
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Figure 1. Configuration and boundary conditions for 2d bubble benchmark 

 

The task is to predict the vertical position of the following parameters: the bubble centroid, the bubble rise 

velocity, the bubble circularity/sphericity, the bubble area and the surface perimeter. The PHOENICS predictions 

of these parameters are then compared with the numerical results of other workers.  The circularity is the 

inverse ratio of the bubble surface perimeter Pb to the perimeter of the area-equivalent circle in two dimensions 

Pa. It takes the value of unity at the beginning of the computation and decreases as the bubble deforms. 

PHOENICS VOF simulations were performed to cover a time duration 3 seconds using a uniform mesh size h in 

each coordinate direction, as defined by h =1/40,1/80,1/160 and 320. For comparison, simulations were made 

using the CICSAM and THINC interface-resolution schemes for discretization of the nonlinear convective term in 

the transport equation for the colour function. 

The results are presented in Figures 2 to 5. Firstly, Figures 2a and 2b show snapshots of the time evolution of 

the bubble at grid resolution 320.  Figure 3 shows the bubble shape obtained with PHOENICS for a grid resolution 

320 at time t = 3s, together with numerical results obtained by Gamet et al (2018) using Interfoam and 

InterIsoFoam. Figure 4 compares the results obtained for PHOENICS VOF-CICSAM with those obtained using 

PHOENICS VOF-THINC. This figure shows the centre of mass, the rise velocity and the circularity at grid 

resolutions of 40, 80, 160 and 320. Figure 5 shows results for PHOENICS VOF-CICSAM compared with results 

obtained with PHOENICS VOF-THINC for the centre of mass, rise velocity and circularity at resolution 320.  

 

 
  

Figure 2a. PHOENICS VOF-THINC: Time evolution of the bubble shape at grid resolution 160×320 (lines contours). 
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Figure 2b. PHOENICS VOF-THINC: Time evolution of bubble shapes at grid resolution 160×320 (filled colours contours). 

 
  

Figure 3. Comparison of bubble shapes at final time t = 3 s for PHOENICS (1/h=320), InterFoam (1/h=160) and 

InterIsoFoam (1/h=160). 
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Figure 4. PHOENICS VOF-CICSAM: Time evolution of the centre of mass (a), rise velocity (b), circularity (c) and close-up of 

the circularity (d) at different grid resolutions. 

 

 
  

Figure 5. Time evolution of centre of mass (a), rise velocity (b), circularity (c) and close-up of the circularity (d) for 

PHOENICS VOF-CICSAM (blue) and VOF-THINC (red) at resolution grid 320. 

  

The comparisons reveal the good behaviour of PHOENICS, whether using the CICSAM or THINC VOF method. 

Moreover, the results compare well with other published results. A thorough study can still be done to 

investigate the effect of varying several parameters in the PHOENICS VOF method, such as the smoothing level, 

Dirac function cutoff, number of sweeps, etc.  
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In this section, we consider a bubble rising due to buoyancy through two stratified liquids of differing density. 

The surface tension, viscosity, and gravity are taken into consideration. The computational domain takes a 

square shape Ω = [0.0, 1.0] × [0.0, 1.0], and at time zero, the bubble (phase 1) has an elliptic shape defined by 

(((𝑥 − 0.5)/𝑎)
2 

+ ((𝑦 − 0.325)/𝑏)
2 

= 1 , with major and minor axes a=0.15 and b=0.075, respectively. 

Phases 2 and 3 are located above and below the horizontal line y = 0.5 with densities of 1000 and 1500 kg/m3, 

respectively.  

Gravity acts along the negative vertical direction with magnitude of 9.8 m/s2. Computations are performed on a 

200 × 200 cell grid using three different sets of physical properties, as indicated in Table 1. 

 








1 (1,1000,1500) (0.0,1.0,2.0) (0.5,0.5,1.0) 

2 (1,1000,1500) (0.0,10.0,20.0) (0.5,0.5,1.0) 

3 (1,1000,1500) (0.0,1.0,2.0) (50.0,50.0,100.0) 

Table 1: Case numbers and physical parameters 

The numerical results at four different times (t = 0.02, 0.12, 0.28, 0.5 s) are presented in Figure 6. The bubble 

rises due to buoyancy, and it can be seen that its shape tends to break up as it moves upwards. This is because 

the surface force isn’t large enough to maintain the circular shape. The effects of viscosity attenuate the rising 

velocity of the bubble, as well as its shape. 

 

 

 

t= 0.02s 

   

 

 

 

 

t=0.12s 

   
 

 

 

t=0.28s 

   
 

 

 

t=0.5s 

   
 Case 1 Case 2 Case 3 

Figure 6 Density contours in the 3-fluid rising-bubble problem. 

Application to the 3-phase system of a bubble rising through 2 stratified liquids 
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The Reynolds number for cases 1, 2, and 3 are 8267.43, 82.67, and 82.67, respectively. The larger the Reynolds 

number, the more distortion the bubble should experience. The second case employs higher dynamic viscosities 

than the other cases, thereby decreasing the Reynolds number. Figure 6 shows that the bubble is subject to less 

distortion for Case 2. A comparison between the results of Case 1 (left column) and Case 3 (right column) shows 

the effects of surface tension. In the results of Case 3, it can be seen that the bubble doesn’t split up because of 

the enlarged surface tension relative to Case 1. For Case 3, Figure 6 shows that the bubble eventually becomes 

fully immersed in the fluid of phase 2. 

The PHOENICS VOF option has been extended to simulate flows involving three different immiscible fluids. The 

implementation has been verified successfully for the two-phase system of a bubble rising through a column of 

liquid. A three-phase system was also investigated by observing the behaviour of a bubble rising in a column 

with two stratified liquids. The bubble motion and distortion were studied qualitatively in response to changes 

in the physical properties of each fluid. Future work will be aimed at quantitative verification of a three-phase 

system by comparison with published numerical results. 
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