Tennessee Valley Authority (TVA) Projects Using PHOENICS

Example 1:

Colbert Fossil Plant Skimmer Wall

Barge Collecting Debris at COF, 2001

Debris Impact on COF

- TVA lost 16,030 MWh from 1994-2000 due to debris.
- After 2000, trash boom deteriorated at COF.
- TVA lost 80,000 MWh due to debris buildup at COF in 2001.

(June 1999)

COF Skimmer Wall Objectives

- Reduce intake temperatures
- Minimize debris at pumping station
- Minimize Fish impingement
- Improve plant efficiency

Colbert Intake Channel Bottom Surveyed September, 1996

New skimmer wall brings cool water to plant, keeps warm water and Debris in the reservoir.

Distance from Intake Structure (ft)

Schematic Potential Layout of COF Skimmer Wall, Option 2 (Preferred Design) Cost = \$1,313,000

Intake Channel Numerical Representation in CFD

Computed Velocity Profile Contours at Several Locations of the Skimmer Wall

Aerial View of COF and Tennessee River

Intake Channel-

Computed Flow Field at COF Intake Channel Vicinity with Hydro Release, (Existing Conditions)

Computed Flow Field at COF Intake Channel Vicinity with No Hydro Release, Existing Conditions

COF Skimmer Wall During and After Construction

During Skimmer Wall Construction 04-2002

Potential Saving about \$20 Millions for the next 25 years

Wall Construction Finished 07-2002 Cost = \$1.4 Millions

Results

- No debris cleaning since the construction of the wall.
- TVA lost <u>0 MWh</u> due to debris buildup at COF since construction.
- An average improvement of about 0.25 °F in intake water temperature.
- Lower Base line 316(b) ruling

Example 2:

Multi-Port Diffuser Kingston Fossil Plant

Survey at KIF intake Channel

Velocity Vector taken at Several Intake Channel Sections

Plan View of the Recommended Diffusers Design

Diffusers Angled at 45 degree, Instantaneous Mixing

Computed NH₃ Concentrations Downstream of KIF Diffusers

Elevation (feet)

Construction Started in October 2003

"At an estimated price of \$500,000, Deskins (KIF plant Manager) says the main advantage of this proposal, besides being environmentally friendly, is the cost savings — \$7.5 million at most or at least \$3.5 million". (Inside TVA, August 2003)

Example 3:

Surface Water Pumps at Tims Ford Reservoir

Example 3:

Surface Water Pumps at Tims Ford Reservoir

Objective: Evaluate surface water pumps performance under several configuration layouts, pump sizes, and initial propeller velocities.

Goal: Determine an optimum design that maximizes the improvement of water temperature and dissolved oxygen (DO) content in hydropower plant releases without disturbing reservoir bottom sediment.

Tools: A 3-dimensional Computational Fluid Dynamics (CFD) model, PHOENICS.

Alternatives: Several modeling analysis for different locations, operating speed, with three and six pump layouts.

surface-water pumps are being Used at Douglas and Cherokee Reservoirs

Impeller forces higher DO and warmer water at the surface down to the turbine intake

Forebay Measured Temperature

Forebay DO Profiles (6-26-03)

Model Layout (Base Case)

Velocity Vectors (Base Case)

ocity 18E+00		
оску 18E+00		Dest a sector
10C+UU		Probe value
025+00		2.113E+00
92L+00		
79F±00	· · · · · · · · · · · · · · · · · · ·	
72F+NN 7 7 7 7	Withdrawal Zone	
66E+00		
59E+00		
52E+00		a a ser e se a a a a se a se a se a se a
46E+00		
39E+00		
33E+00		
63E-01		
97E-01		
32E-01		
56E-01 <u> </u>		A HALLESSEN
4E-05 C C C C		
= = = = = =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	ase case Temp DO 3560cfs 128Sec	
/R Vie [] [] []		

Velocity Vectors with Three Pumps

Computed Temperature at Intake Vertical Centerline (Six Pumps)

Computed DO at Intake Vertical Centerline (Six Pumps)

Recommendation

The option recommended is six 8-ft pump layout. Under the June 26, 2003, forebay profile, the water temperature release was improved by 10.3°F and the DO by 2.0 mg/L.