TALK=T;RUN(1,1) DISPLAY Cases 110 to 114 illustrate how "porosity" values may be used to introduce not only geometrical data, but also variations in thermal conductivity, specific heat and heat-transfer coeff. In case 110, the cross-section and other properties are uniform. Subsequent cases introduce non-uniformities, by way of porosity, one by one. A sketch of the geometry for case 110 follows: /--/| /**/ | /**/ | /**/ | /**/ <------- surface in contact with |--| | ^ surrounding fluid |**| | | at temperature = 0.0 |**| | |x |**| | | ///// |**| ////////////////////////////////// ////// |**| ////////////////////////////////// /////// |**| ////// base at temperature = 1.0 / //////// |**| ////////////////////////////////// ///////// |--|////////////////////////////////// y----> That it is possible to act in this way does not mean that it is necessary or even recommended. These cases were very early entries to the library, and have be$ en retained for historical interest. However, the treatment of H1 as though it represented temperature is valid only for a constant specific heat; and, in the final case of the series, the specific heat is supposed to vary. Nowadays, use of TEM1 is recommended rather than H1; and In-Form provides a much more convenient way of introducing variations of properties and boundary conditions. ENDDIS DISPLAY This is case 110, but with the fin tapering from its full thickness at x=0 to zero at x=XULAST. This is effected through EPOR and VPOR settings. ENDDIS DISPLAY In addition to the taper of case 111, the material changes at x=XULAST/2. Here the thermal-conductivity change, from COND1 to COND2, is effected by changing the area porosity. ENDDIS DISPLAY In addition to the taper and conductivity change of case 112, a simultaneous specific-heat change, from SPHT1 to SPHT2, is effected by changing the volume porosity appropriately. ENDDIS DISPLAY In addition to all the effects introduced in cases 110 to 113, the surface heat-transfer coefficient is supposed to increase linearly from the value COEFF at the root to twice that value at the tip. This is effected by increasing the north face-area porosity appropriately. ENDDIS ************************************************************ Group 1. Run Title and Number ************************************************************ ************************************************************ TEXT(Fin Non-Uniform Surface Coeff. ) ************************************************************ ************************************************************ IRUNN = 1 ;LIBREF = 113 ************************************************************ Group 2. Time dependence STEADY = F * Set overall time and no. of steps TFIRST =0. ;TLAST =20. FSTEP = 1 ;LSTEP = 100 TFRAC(1)=1.0E-02 ;TFRAC(51)=0.51 ************************************************************ Group 3. X-Direction Grid Spacing CARTES = T NX = 20 XULAST =0.1 XFRAC(1)=0.05 ;XFRAC(3)=0.15 XFRAC(5)=0.25 ;XFRAC(7)=0.35 XFRAC(9)=0.45 ;XFRAC(11)=0.55 XFRAC(13)=0.65 ;XFRAC(15)=0.75 XFRAC(17)=0.85 ;XFRAC(19)=0.95 ************************************************************ Group 4. Y-Direction Grid Spacing NY = 1 YVLAST =1.0E-03 YFRAC(1)=1. ************************************************************ Group 5. Z-Direction Grid Spacing PARAB = F NZ = 1 ZWLAST =1. ZFRAC(1)=1. ************************************************************ Group 6. Body-Fitted Coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd ONEPHS = T NAME(147)=NPOR ;NAME(148)=VPOR NAME(149)=EPOR ;NAME(150)=TEMP * Y in SOLUTN argument list denotes: * 1-stored 2-solved 3-whole-field * 4-point-by-point 5-explicit 6-harmonic averaging SOLUTN(NPOR,Y,N,N,N,N,Y) SOLUTN(VPOR,Y,N,N,N,N,Y) SOLUTN(EPOR,Y,N,N,N,N,Y) SOLUTN(TEMP,Y,Y,N,N,N,Y) EPOR = 149 ;HPOR = 0 ;NPOR = 147 ;VPOR = 148 ************************************************************ Group 8. Terms & Devices * Y in TERMS argument list denotes: * 1-built-in source 2-convection 3-diffusion 4-transient * 5-first phase variable 6-interphase transport TERMS(TEMP,N,N,Y,Y,Y,Y) DIFCUT =0.5 ;ZDIFAC =1. GALA = F ;ADDDIF = F ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1 ************************************************************ Group 9. Properties used if PRPS is not stored, and where PRPS = -1.0 if it is! RHO1 =1.0E+04 ;TMP1 =0. EL1 =0. TSURR =0. ;TEMP0 =0. PRESS0 =0. DVO1DT =0. ;DRH1DP =0. EMISS =0. ;SCATT =0. RADIA =0. ;RADIB =0. ENUL =1. ;ENUT =0. PRNDTL(TEMP)=1.25E+04 PRT(TEMP)=1. CP1 =1. ;CP2 =1. ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initial field variables (PHIs) FIINIT(NPOR)=1. ;FIINIT(VPOR)=0. FIINIT(EPOR)=0. ;FIINIT(TEMP)=1. PATCH(POROSITY,LINVLX, 1, 20, 1, 1, 1, 1, 1, 1) INIT(POROSITY,NPOR,10. ,0.025 ) INIT(POROSITY,VPOR,-10. ,0.975 ) INIT(POROSITY,EPOR,-10. ,0.95 ) PATCH(MATERIAL,LINVLX, 10, 20, 1, 1, 1, 1, 1, 1) INIT(MATERIAL,VPOR,2. ,-0.105 ) INIT(MATERIAL,EPOR,-115. ,5.75 ) INIADD = T FSWEEP = 1 NAMFI =CHAM ************************************************************ Group 12. Patchwise adjustment of terms Patches for this group are printed with those for Group 13. Their names begin either with GP12 or & ************************************************************ Group 13. Boundary & Special Sources PATCH(SURFACE ,FREEN , 1, 20, 1, 1, 1, 1, 1, 100) COVAL(SURFACE ,TEMP,10. ,0. ) PATCH(ROOT ,WWALL , 1, 1, 1, 1, 1, 1, 1, 100) COVAL(ROOT ,TEMP,8.0E-05 ,1. ) XCYCLE = F EGWF = T WALLCO = GRND2 ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 1 ;ISWC1 = 1 LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1 SELREF = T RESFAC =1.0E-04 ************************************************************ Group 16. Terminate Iterations LITER(TEMP)=20 ENDIT(TEMP)=1.0E-03 ************************************************************ Group 17. Relaxation RELAX(TEMP,FALSDT,1.0E+09) OVRRLX =0. EXPERT = F ;NNORSL = F ************************************************************ Group 18. Limits VARMAX(NPOR)=1.0E+10 ;VARMIN(NPOR)=-1.0E+10 VARMAX(VPOR)=1.0E+10 ;VARMIN(VPOR)=-1.0E+10 VARMAX(EPOR)=1.0E+10 ;VARMIN(EPOR)=-1.0E+10 VARMAX(TEMP)=1.0E+10 ;VARMIN(TEMP)=-1.0E+10 ************************************************************ Group 19. Data transmitted to GROUND PARSOL = F ISG62 = 1 SPEDAT(SET,GXMONI,TRANSIENT,L,F) ************************************************************ Group 20. Preliminary Printout ************************************************************ Group 21. Print-out of Variables INIFLD = F ;SUBWGR = F * Y in OUTPUT argument list denotes: * 1-field 2-correction-eq. monitor 3-selective dumping * 4-whole-field residual 5-spot-value table 6-residual table OUTPUT(NPOR,Y,N,Y,N,N,N) OUTPUT(VPOR,Y,N,Y,N,N,N) OUTPUT(EPOR,Y,N,Y,N,N,N) OUTPUT(TEMP,Y,Y,N,N,N,N) ************************************************************ Group 22. Monitor Print-Out IXMON = 1 ;IYMON = 1 ;IZMON = 1 NPRMON = 100000 ;NPRMNT = 100 ;TSTSWP = 1 UWATCH = T ;USTEER = T HIGHLO = F ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ;NUMCLS = 5 NTPRIN = 50 ;ISTPRF = 1 ;ISTPRL = 100000 NXPRIN = 2 ;IXPRF = 1 ;IXPRL = 10000 IPLTF = 1 ;IPLTL = -1 ;NPLT = -1 ISWPRF = 1 ;ISWPRL = 100000 ITABL = 3 ;IPROF = 1 ABSIZ =0.5 ;ORSIZ =0.2 NTZPRF = 1 ;NCOLPF = 50 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20 PATCH(FIXEDT ,PROFIL, 1, 20, 1, 1, 1, 1, 1, 100) PLOT(FIXEDT ,TEMP,0. ,1. ) PATCH(FINTIP ,PROFIL, 20, 20, 1, 1, 1, 1, 1, 100) PLOT(FINTIP ,TEMP,0. ,0. ) ************************************************************ Group 24. Dumps For Restarts SAVE = T ;NOWIPE = F NSAVE =CHAM STOP