TALK=T;RUN(1,1)
  PHOTON USE
   p



   up z;vec x 1 sh;pau;clear
   con p1 x 1 fi;.01;pau;clear
   con tem1 x 1 fi;.01;pau;cl
  ENDUSE
  DISPLAY
  The problem considered is laminar free convection of air
  between a pair of parallel, vertically-mounted flat plates of
  length H. These plates are maintained either at uniform
  heat fluxes (UHF) qw or uniform wall temperatures (UWT) tw.

  The solution domain has one plane of symmetry at the centre
  of the gap B between the two plates. The external pressure
  is the same at both the top and bottom of the plate, so the
  flow is driven entirely by buoyancy forces.

  The Boussinesq assumption is made in the simulations, and the
  flow is characterised by the Grashof number GrB and the
  gap-to-length ratio B/H.

  The solution domain comprises the gap between the
  two channel plates, as well as the free environment upstream
  and downstream of the channel.

  For economy, the solution domain may be restricted to the gap
  alone, although this approach is less accurate for developing
  flow because of the empirical representation of total pressure
  losses at the channel inlet and outlet.

  The practical application of free convection in vertical
  channels may be found in the electronics and telecommunications
  industry.


  The flow is fully developed if GrB*(B/H) < 1 for a UWT
  condition, and when GrB*(B/H) < 100 for a UHF condition (see
  Aung, Int.J. Heat Mass Transfer, Vol.15,p1577, 1972).

  Developing flow has been considered by Aung et al, Int.J.Heat
  Mass Transfer, Vol.15, p2293, 1972 & Morrone et al, Int.J.Heat
  Mass Transfer, Vol.40, No.5, p993, 1997).

   The dimensionless equations solved are:

      dW/dZ + dV/dY = 0 ;
      W*dZ/dZ + V*dV/dY =  d/dY(dW/dY) + d/dZ(dW/dZ)
                         - dP/DZ + GrB*T
      W*dT/dZ + V*dT/dY =  (1./Pr)*d/dY(dT/dY)
                         + (1./Pr)*d/dZ(dT/dZ)
    where

      Z  = z/B ; Y = y/B ; W = w*B/enul ; V = v*B/enul
      P  = (p-p,ref)*(B**2)/(rho*enul**2)
      T  = k*(t-tref)/(qw*B)  ; Pr = rho*enul*cp/k
      GrB = g*beta*qw*B**4/(k*enul**2)

   This Q1 may be used to run 6 cases which are documented in
   the literature. The results are summarised below in terms of
   the dimensionless volumetric flow rate PSI(=wbulk*B/enul):

   Developing Flow (UHF)
   ---------------------
                         phoenics        phoenics
                      reduced domain   full domain    Morrone
    GrH=1.E5 B/H=0.5      19.0            27.0         30.0
    GrH=1.E4 B/H=0.8      12.5            19.0         21.5

   Fully-Developed Flow
   --------------------
                                  phoenics             Aung
                             reduced & full domain
    GrB=1.E2  B/H=0.04 (UWT)         8.16              8.33
    GrB=1.E2  B/H=0.04 (UHF)        14.80             17.13

   where GrH=GrB*(H/B)**4a n The dimensionless volumetric flow
   rate produced by PHOENICS can be obtained from the RESULT file
   by taking TWICE the printed NETT source of R1 at INLET.

  ENDDIS
 ************************************************************
  Group 1. Run Title and Number
 ************************************************************
 ************************************************************
 
 TEXT(Free Convection Between Vertical Plates )
 
 ************************************************************
 ************************************************************
 
 IRUNN = 1 ;LIBREF = 254
 ************************************************************
  Group 2. Time dependence
 STEADY = T
 ************************************************************
  Group 3. X-Direction Grid Spacing
 CARTES = T
 NX = 1
 XULAST =1.
 XFRAC(1)=1.
 ************************************************************
  Group 4. Y-Direction Grid Spacing
 NY = 55
 YVLAST =1.5
 YFRAC(1)=0.050764 ;YFRAC(2)=0.088385
 YFRAC(3)=0.122251 ;YFRAC(4)=0.153888
 YFRAC(5)=0.183964 ;YFRAC(6)=0.212852
 YFRAC(7)=0.240788 ;YFRAC(8)=0.267935
 YFRAC(9)=0.294409 ;YFRAC(10)=0.3203
 YFRAC(11)=0.345677 ;YFRAC(12)=0.370597
 YFRAC(13)=0.395104 ;YFRAC(14)=0.419237
 YFRAC(15)=0.443027 ;YFRAC(16)=0.466501
 YFRAC(17)=0.489684 ;YFRAC(18)=0.512595
 YFRAC(19)=0.535254 ;YFRAC(20)=0.557674
 YFRAC(21)=0.579872 ;YFRAC(22)=0.601859
 YFRAC(23)=0.623647 ;YFRAC(24)=0.645247
 YFRAC(25)=0.666667 ;YFRAC(26)=0.672294
 YFRAC(27)=0.679596 ;YFRAC(28)=0.687699
 YFRAC(29)=0.69637 ;YFRAC(30)=0.70549
 YFRAC(31)=0.714985 ;YFRAC(32)=0.724803
 YFRAC(33)=0.734907 ;YFRAC(34)=0.745267
 YFRAC(35)=0.75586 ;YFRAC(36)=0.766668
 YFRAC(37)=0.777674 ;YFRAC(38)=0.788865
 YFRAC(39)=0.80023 ;YFRAC(40)=0.811758
 YFRAC(41)=0.823442 ;YFRAC(42)=0.835272
 YFRAC(43)=0.847243 ;YFRAC(44)=0.859347
 YFRAC(45)=0.87158 ;YFRAC(46)=0.883935
 YFRAC(47)=0.896409 ;YFRAC(48)=0.908996
 YFRAC(49)=0.921694 ;YFRAC(50)=0.934498
 YFRAC(51)=0.947405 ;YFRAC(52)=0.960411
 YFRAC(53)=0.973514 ;YFRAC(54)=0.986712
 YFRAC(55)=1.
 ************************************************************
  Group 5. Z-Direction Grid Spacing
 PARAB = F
 NZ = 65
 ZWLAST =3.75
 ZFRAC(1)=0.030343 ;ZFRAC(3)=0.073072
 ZFRAC(5)=0.109959 ;ZFRAC(7)=0.143924
 ZFRAC(9)=0.175974 ;ZFRAC(11)=0.206618
 ZFRAC(13)=0.236162 ;ZFRAC(15)=0.264806
 ZFRAC(17)=0.292694 ;ZFRAC(19)=0.319932
 ZFRAC(21)=0.339798 ;ZFRAC(23)=0.357493
 ZFRAC(25)=0.37793 ;ZFRAC(27)=0.400115
 ZFRAC(29)=0.423621 ;ZFRAC(31)=0.448204
 ZFRAC(33)=0.473702 ;ZFRAC(35)=0.5
 ZFRAC(37)=0.526298 ;ZFRAC(39)=0.551796
 ZFRAC(41)=0.576379 ;ZFRAC(43)=0.599885
 ZFRAC(45)=0.62207 ;ZFRAC(47)=0.642507
 ZFRAC(49)=0.660202 ;ZFRAC(51)=0.669213
 ZFRAC(53)=0.685063 ;ZFRAC(55)=0.712805
 ZFRAC(57)=0.751212 ;ZFRAC(59)=0.799575
 ZFRAC(61)=0.857398 ;ZFRAC(63)=0.924306
 ZFRAC(65)=1.
 ************************************************************
  Group 6. Body-Fitted Coordinates
 ************************************************************
  Group 7. Variables: STOREd,SOLVEd,NAMEd
 ONEPHS = T
 NAME(1)=P1 ;NAME(5)=V1
 NAME(7)=W1 ;NAME(148)=PRPS
 NAME(150)=TEM1
    * Y in SOLUTN argument list denotes:
    * 1-stored 2-solved 3-whole-field
    * 4-point-by-point 5-explicit 6-harmonic averaging 
 SOLUTN(P1,Y,Y,Y,N,N,Y)
 SOLUTN(V1,Y,Y,N,N,N,N)
 SOLUTN(W1,Y,Y,N,N,N,N)
 SOLUTN(PRPS,Y,N,N,N,N,Y)
 SOLUTN(TEM1,Y,Y,Y,N,N,N)
 PRPS = 148
 ************************************************************
  Group 8. Terms & Devices
    * Y in TERMS argument list denotes:
    * 1-built-in source 2-convection 3-diffusion 4-transient
    * 5-first phase variable 6-interphase transport         
 TERMS(P1,Y,Y,Y,N,Y,Y)
 TERMS(V1,Y,Y,Y,Y,Y,Y)
 TERMS(W1,Y,Y,Y,Y,Y,Y)
 TERMS(TEM1,N,Y,Y,N,Y,N)
 DIFCUT =0. ;ZDIFAC =1.
 GALA = F ;ADDDIF = F
 ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1
 ************************************************************
  Group 9. Properties used if PRPS is not
  stored, and where PRPS = -1.0 if it is!
 RHO1 =1. ;TMP1 =0.
 EL1 =0.
 TSURR =0. ;TEMP0 =0.
 PRESS0 =0.
 DVO1DT =4096. ;DRH1DP =0.
 EMISS =0. ;SCATT =0.
 RADIA =0. ;RADIB =0.
 ENUL =1. ;ENUT =0.
 PRNDTL(V1)=1. ;PRNDTL(W1)=1.
 PRNDTL(TEM1)=-1.408451
 PRT(V1)=1. ;PRT(W1)=1.
 PRT(TEM1)=1.
 CP1 =1. ;CP2 =1.
 ************************************************************
  Group 10.Inter-Phase Transfer Processes
 ************************************************************
  Group 11.Initial field variables (PHIs)
 FIINIT(P1)=1.0E-10 ;FIINIT(V1)=1.0E-10
 FIINIT(W1)=0. ;FIINIT(PRPS)=-1.
 FIINIT(TEM1)=0.
 
 PATCH(PLATE ,INIVAL, 1, 1, 1, 25, 21, 50, 1, 1)
 INIT(PLATE ,PRPS,0. ,198. )
 INIADD = F
 FSWEEP = 1
 NAMFI =CHAM
 ************************************************************
  Group 12. Patchwise adjustment of terms
  Patches for this group are printed with those
  for Group 13.
  Their names begin either with GP12 or &
 ************************************************************
  Group 13. Boundary & Special Sources
 
 PATCH(HOCS ,CELL , 0, 0, 0, 0, 0, 0, 1, 1)
 COVAL(HOCS ,V1 , FIXFLU , GRND1 )
 COVAL(HOCS ,W1 , FIXFLU , GRND1 )
 
 PATCH(INLET ,LOW , 1, 1, 1, 55, 1, 1, 1, 1)
 COVAL(INLET ,P1 ,100. ,0. )
 COVAL(INLET ,TEM1,0. ,0. )
 
 PATCH(HEATFLUX,SWALL , 1, 1, 26, 26, 21, 50, 1, 1)
 COVAL(HEATFLUX,TEM1, FIXFLU ,1. )
 
 PATCH(EXIT ,HIGH , 1, 1, 1, 55, 65, 65, 1, 1)
 COVAL(EXIT ,P1 ,100. ,0. )
 COVAL(EXIT ,TEM1,0. ,0. )
 
 PATCH(FREEBH ,SOUTH , 1, 1, 1, 1, 51, 65, 1, 1)
 COVAL(FREEBH ,P1 ,100. ,0. )
 COVAL(FREEBH ,TEM1,0. ,0. )
 
 PATCH(BUOY ,PHASEM, 1, 1, 1, 55, 1, 65, 1, 1)
 COVAL(BUOY ,W1 , FIXFLU , GRND3 )
 XCYCLE = F
 EGWF = T
 WALLCO = GRND2
 BUOYA =0. ; BUOYB =0.
 BUOYC =-1.
 ************************************************************
  Group 14. Downstream Pressure For PARAB
 ************************************************************
  Group 15. Terminate Sweeps
 LSWEEP = 800 ;ISWC1 = 1
 LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1
 SELREF = T
 RESFAC =1.0E-04
 ************************************************************
  Group 16. Terminate Iterations
 LITER(P1)=50 ;LITER(V1)=10
 LITER(W1)=10 ;LITER(TEM1)=50
 ENDIT(P1)=GRND1 ;ENDIT(V1)=1.0E-03
 ENDIT(W1)=1.0E-03 ;ENDIT(TEM1)=1.0E-03
 ************************************************************
  Group 17. Relaxation
 RELAX(P1,LINRLX,1.)
 RELAX(V1,FALSDT,3.493856)
 RELAX(W1,FALSDT,3.493856)
 RELAX(PRPS,LINRLX,1.)
 RELAX(TEM1,FALSDT,1.0E+09)
 OVRRLX =0.
 EXPERT = F ;NNORSL = F
 ************************************************************
  Group 18. Limits
 VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10
 VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06
 VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06
 VARMAX(PRPS)=1.0E+10 ;VARMIN(PRPS)=-1.0E+10
 VARMAX(TEM1)=1.0E+10 ;VARMIN(TEM1)=-1.0E+10
 ************************************************************
  Group 19. Data transmitted to GROUND
 PARSOL = F
 ISG62 = 1
 SPEDAT(SET,SCHEME,INLCS005,I,1)
 SPEDAT(SET,SCHEME,INLCS007,I,1)
 SPEDAT(SET,MATERIAL,198,L,T)
 ************************************************************
  Group 20. Preliminary Printout
 DISTIL = T ;NULLPR = F
 NDST = 0
 DSTTOL =1.0E-02
 EX(P1)=125.400002 ;EX(V1)=1.595
 EX(W1)=9.028 ;EX(PRPS)=0.7902
 EX(TEM1)=0.04486
 ************************************************************
  Group 21. Print-out of Variables
 INIFLD = F ;SUBWGR = F
    * Y in OUTPUT argument list denotes:
    * 1-field 2-correction-eq. monitor 3-selective dumping      
    * 4-whole-field residual 5-spot-value table 6-residual table
 OUTPUT(P1,Y,N,Y,Y,Y,Y)
 OUTPUT(V1,Y,N,Y,Y,Y,Y)
 OUTPUT(W1,Y,N,Y,Y,Y,Y)
 OUTPUT(PRPS,Y,N,Y,N,N,N)
 OUTPUT(TEM1,Y,N,Y,Y,Y,Y)
 ************************************************************
  Group 22. Monitor Print-Out
 IXMON = 1 ;IYMON = 54 ;IZMON = 64
 NPRMON = 100000 ;NPRMNT = 1 ;TSTSWP = -1
 UWATCH = T ;USTEER = T
 HIGHLO = F
 ************************************************************
  Group 23.Field Print-Out & Plot Control
 NPRINT = 100000 ;NUMCLS = 5
 NYPRIN = -1 ;IYPRF = 1 ;IYPRL = 10000
 NZPRIN = 2 ;IZPRF = 1 ;IZPRL = 10000
 XZPR = F ;YZPR = F
 IPLTF = 1 ;IPLTL = -1 ;NPLT = 10
 ISWPRF = 1 ;ISWPRL = 100000
 ITABL = 3 ;IPROF = 1
 ABSIZ =0.5 ;ORSIZ =0.4
 NTZPRF = 1 ;NCOLPF = 50
 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20
   No PATCHes yet used for this Group
 ************************************************************
  Group 24. Dumps For Restarts
 SAVE = T ;NOWIPE = F
 NSAVE =CHAM
STOP