************************************************************ Group 1. Run Title and Number ************************************************************ ************************************************************ TEXT(Convective Cooling Of Radial Fin ) ************************************************************ ************************************************************ IRUNN = 1 ;LIBREF = 14 ************************************************************ Group 2. Time dependence STEADY = T ************************************************************ Group 3. X-Direction Grid Spacing CARTES = F NX = 12 XULAST =3.142 XFRAC(1)=0.083333 ;XFRAC(3)=0.25 XFRAC(5)=0.416667 ;XFRAC(7)=0.583333 XFRAC(9)=0.75 ;XFRAC(11)=0.916667 ************************************************************ Group 4. Y-Direction Grid Spacing NY = 12 YVLAST =1. RINNER =1.14 ;SNALFA =0. Method of pairs used for grid setting. YFRAC(1)=-10. ;YFRAC(2)=0.0125 YFRAC(3)=2. ;YFRAC(4)=0.05 ************************************************************ Group 5. Z-Direction Grid Spacing PARAB = F NZ = 7 ZWLAST =1. Method of pairs used for grid setting. ZFRAC(1)=-4. ;ZFRAC(2)=2.5E-03 ZFRAC(3)=3. ;ZFRAC(4)=5.0E-03 ************************************************************ Group 6. Body-Fitted Coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd ONEPHS = T NAME(1)=P1 ;NAME(3)=U1 NAME(5)=V1 ;NAME(7)=W1 NAME(14)=TEMP ;NAME(148)=HPOR NAME(149)=EPOR ;NAME(150)=NPOR * Y in SOLUTN argument list denotes: * 1-stored 2-solved 3-whole-field * 4-point-by-point 5-explicit 6-harmonic averaging SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(U1,Y,Y,N,Y,N,Y) SOLUTN(V1,Y,Y,N,Y,N,Y) SOLUTN(W1,Y,Y,N,Y,N,Y) SOLUTN(TEMP,Y,Y,N,Y,N,Y) SOLUTN(HPOR,Y,N,N,N,N,N) SOLUTN(EPOR,Y,N,N,N,N,N) SOLUTN(NPOR,Y,N,N,N,N,N) EPOR = 149 ;HPOR = 148 ;NPOR = 150 ;VPOR = 0 ************************************************************ Group 8. Terms & Devices * Y in TERMS argument list denotes: * 1-built-in source 2-convection 3-diffusion 4-transient * 5-first phase variable 6-interphase transport TERMS(P1,Y,Y,Y,N,Y,Y) TERMS(U1,Y,Y,Y,Y,Y,Y) TERMS(V1,Y,Y,Y,Y,Y,Y) TERMS(W1,Y,Y,Y,Y,Y,Y) TERMS(TEMP,N,Y,Y,N,Y,N) DIFCUT =0. ;ZDIFAC =1. GALA = F ;ADDDIF = F ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1 ************************************************************ Group 9. Properties used if PRPS is not stored, and where PRPS = -1.0 if it is! RHO1 =1.163 ;TMP1 =0. EL1 =0. TSURR =0. ;TEMP0 =0. PRESS0 =0. DVO1DT =32.961601 ;DRH1DP =0. EMISS =0. ;SCATT =0. RADIA =0. ;RADIB =0. ENUL =1.8E-05 ;ENUT =0. PRNDTL(U1)=1. ;PRNDTL(V1)=1. PRNDTL(W1)=1. ;PRNDTL(TEMP)=0.7 PRT(U1)=1. ;PRT(V1)=1. PRT(W1)=1. ;PRT(TEMP)=1. CP1 =1. ;CP2 =1. ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initial field variables (PHIs) FIINIT(P1)=1.0E-10 ;FIINIT(U1)=-0.5 FIINIT(V1)=1.0E-10 ;FIINIT(W1)=1.0E-10 FIINIT(TEMP)=1.0E-10 ;FIINIT(HPOR)=1. FIINIT(EPOR)=1. ;FIINIT(NPOR)=1. PATCH(TALL ,LINVLY, 1, 12, 1, 12, 1, 7, 1, 1) INIT(TALL ,TEMP,-150. ,37. ) PATCH(TCYL ,LINVLY, 1, 12, 1, 1, 1, 7, 1, 1) INIT(TCYL ,TEMP,-120. ,75. ) PATCH(TFIN ,LINVLY, 1, 12, 2, 9, 1, 3, 1, 1) INIT(TFIN ,TEMP,-120. ,75. ) PATCH(CMP3 ,INIVAL, 1, 12, 1, 8, 1, 3, 1, 1) INIT(CMP3 ,NPOR,0. ,1200.864136 ) PATCH(CMP4 ,INIVAL, 1, 11, 1, 1, 1, 7, 1, 1) INIT(CMP4 ,EPOR,0. ,1200.864136 ) PATCH(CMP5 ,INIVAL, 1, 11, 2, 9, 1, 3, 1, 1) INIT(CMP5 ,EPOR,0. ,1200.864136 ) PATCH(CMP6 ,INIVAL, 1, 12, 1, 1, 1, 6, 1, 1) INIT(CMP6 ,HPOR,0. ,1200.864136 ) PATCH(CMP7 ,INIVAL, 1, 12, 2, 9, 1, 2, 1, 1) INIT(CMP7 ,HPOR,0. ,1200.864136 ) PATCH(CMP8 ,INIVAL, 1, 12, 1, 1, 4, 7, 1, 1) INIT(CMP8 ,NPOR,0. ,2. ) PATCH(CMP9 ,INIVAL, 1, 12, 2, 9, 3, 3, 1, 1) INIT(CMP9 ,HPOR,0. ,2. ) PATCH(CMP10 ,INIVAL, 1, 12, 9, 9, 1, 3, 1, 1) INIT(CMP10 ,NPOR,0. ,2. ) INIADD = F FSWEEP = 1 NAMFI =CHAM ************************************************************ Group 12. Patchwise adjustment of terms Patches for this group are printed with those for Group 13. Their names begin either with GP12 or & ************************************************************ Group 13. Boundary & Special Sources PATCH(CYLINDER,CELL , 1, 12, 1, 1, 1, 7, 1, 1) COVAL(CYLINDER,U1 , FIXVAL ,0. ) COVAL(CYLINDER,V1 , FIXVAL ,0. ) COVAL(CYLINDER,W1 , FIXVAL ,0. ) PATCH(FIN ,CELL , 1, 12, 2, 9, 1, 3, 1, 1) COVAL(FIN ,U1 , FIXVAL ,0. ) COVAL(FIN ,V1 , FIXVAL ,0. ) COVAL(FIN ,W1 , FIXVAL ,0. ) PATCH(HEATFLX ,SOUTH , 1, 12, 1, 1, 1, 7, 1, 1) COVAL(HEATFLX ,TEMP, FIXFLU ,1.796627 ) PATCH(EXIT ,NORTH , 1, 6, 12, 12, 1, 7, 1, 1) COVAL(EXIT ,P1 ,1000. ,0. ) COVAL(EXIT ,U1 ,0. ,0. ) COVAL(EXIT ,V1 ,0. ,0. ) COVAL(EXIT ,W1 ,0. ,0. ) COVAL(EXIT ,TEMP,0. ,0. ) PATCH(INLET ,NORTH , 7, 12, 12, 12, 1, 7, 1, 1) COVAL(INLET ,P1 ,-2.326 ,0. ) COVAL(INLET ,U1 ,0. , SAME ) COVAL(INLET ,V1 ,0. , SAME ) COVAL(INLET ,TEMP,0. ,0. ) PATCH(BUOYU ,PHASEM, 1, 11, 1, 12, 1, 7, 1, 1) COVAL(BUOYU ,U1 , FIXFLU , GRND3 ) PATCH(BUOYV ,PHASEM, 1, 12, 1, 11, 1, 7, 1, 1) COVAL(BUOYV ,V1 , FIXFLU , GRND3 ) PATCH(RADBOT ,NORTH , 1, 12, 1, 1, 4, 7, 1, 1) COVAL(RADBOT ,TEMP, FIXFLU ,-0.095879 ) PATCH(RADSIDE ,HIGH , 1, 12, 2, 9, 3, 3, 1, 1) COVAL(RADSIDE ,TEMP, FIXFLU ,-0.067304 ) PATCH(RADTOP ,NORTH , 1, 12, 9, 9, 1, 3, 1, 1) COVAL(RADTOP ,TEMP, FIXFLU ,-0.290899 ) XCYCLE = F EGWF = T WALLCO = GRND2 BUOYA =0. ; BUOYB =-1. BUOYC =0. ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 20 ;ISWC1 = 1 LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1 SELREF = T RESFAC =1.0E-02 ************************************************************ Group 16. Terminate Iterations LITER(P1)=20 ;LITER(U1)=10 LITER(V1)=10 ;LITER(W1)=10 LITER(TEMP)=20 ENDIT(P1)=1.0E-03 ;ENDIT(U1)=1.0E-03 ENDIT(V1)=1.0E-03 ;ENDIT(W1)=1.0E-03 ENDIT(TEMP)=1.0E-03 ************************************************************ Group 17. Relaxation RELAX(P1,LINRLX,0.3) RELAX(U1,FALSDT,1.) RELAX(V1,FALSDT,1.) RELAX(W1,FALSDT,1.) RELAX(TEMP,FALSDT,1.0E+09) OVRRLX =0. EXPERT = F ;NNORSL = F ************************************************************ Group 18. Limits VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10 VARMAX(U1)=1.0E+06 ;VARMIN(U1)=-1.0E+06 VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06 VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06 VARMAX(TEMP)=1.0E+10 ;VARMIN(TEMP)=-1.0E+10 VARMAX(HPOR)=1.0E+10 ;VARMIN(HPOR)=-1.0E+10 VARMAX(EPOR)=1.0E+10 ;VARMIN(EPOR)=-1.0E+10 VARMAX(NPOR)=1.0E+10 ;VARMIN(NPOR)=-1.0E+10 ************************************************************ Group 19. Data transmitted to GROUND PARSOL = F ISG62 = 1 ************************************************************ Group 20. Preliminary Printout ************************************************************ Group 21. Print-out of Variables INIFLD = F ;SUBWGR = F * Y in OUTPUT argument list denotes: * 1-field 2-correction-eq. monitor 3-selective dumping * 4-whole-field residual 5-spot-value table 6-residual table OUTPUT(P1,Y,Y,Y,Y,Y,Y) OUTPUT(U1,Y,Y,Y,Y,Y,Y) OUTPUT(V1,Y,Y,Y,Y,Y,Y) OUTPUT(W1,Y,Y,Y,Y,Y,Y) OUTPUT(TEMP,N,N,Y,Y,N,N) OUTPUT(HPOR,Y,N,Y,N,N,N) OUTPUT(EPOR,Y,N,Y,N,N,N) OUTPUT(NPOR,Y,N,Y,N,N,N) ************************************************************ Group 22. Monitor Print-Out IXMON = 6 ;IYMON = 6 ;IZMON = 4 NPRMON = 100000 ;NPRMNT = 1 ;TSTSWP = -1 UWATCH = T ;USTEER = T HIGHLO = F ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ;NUMCLS = 5 NXPRIN = 2 ;IXPRF = 1 ;IXPRL = 10000 NYPRIN = -1 ;IYPRF = 1 ;IYPRL = 10000 NZPRIN = -1 ;IZPRF = 1 ;IZPRL = 10000 XZPR = F ;YZPR = T IPLTF = 1 ;IPLTL = 20 ;NPLT = 1 ISWPRF = 1 ;ISWPRL = 100000 ITABL = 3 ;IPROF = 3 ABSIZ =0.5 ;ORSIZ =0.4 NTZPRF = 1 ;NCOLPF = 50 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20 PATCH(TXEQ1 ,CONTUR, 1, 1, 1, 12, 1, 7, 1, 1) PLOT(TXEQ1 ,TEMP,0. ,15. ) PATCH(TXEQ4 ,CONTUR, 4, 4, 1, 12, 1, 7, 1, 1) PLOT(TXEQ4 ,TEMP,0. ,15. ) PATCH(TXEQ6 ,CONTUR, 6, 6, 1, 12, 1, 7, 1, 1) PLOT(TXEQ6 ,TEMP,0. ,15. ) PATCH(TXEQ9 ,CONTUR, 9, 9, 1, 12, 1, 7, 1, 1) PLOT(TXEQ9 ,TEMP,0. ,15. ) PATCH(45DEG ,PROFIL, 3, 3, 2, 12, 7, 7, 1, 1) PLOT(45DEG ,U1 ,0. ,0. ) PLOT(45DEG ,TEMP,0. ,0. ) PATCH(90DEG ,PROFIL, 6, 6, 2, 12, 7, 7, 1, 1) PLOT(90DEG ,U1 ,0. ,0. ) PLOT(90DEG ,TEMP,0. ,0. ) PATCH(120DEG ,PROFIL, 8, 8, 2, 12, 7, 7, 1, 1) PLOT(120DEG ,U1 ,0. ,0. ) PLOT(120DEG ,TEMP,0. ,0. ) PATCH(165DEG ,PROFIL, 11, 11, 2, 12, 7, 7, 1, 1) PLOT(165DEG ,U1 ,0. ,0. ) PLOT(165DEG ,TEMP,0. ,0. ) ************************************************************ Group 24. Dumps For Restarts SAVE = T ;NOWIPE = F NSAVE =CHAM STOPTALK=T;RUN(1,1) PHOTON USE p phi msg CONVECTIVE COOLING OF A RADIALLY-RIBBED CYLINDER msg view z;rot 90 norm msg Velocity vectors: gr ou z 1;vec z 1 sh msg msg Pressto continue pause vec off;red msg Pressure contours: con p1 z 1 sh;int 15 msg msg Press to continue pause con off;red msg Temperature contours: con temp z 1 fi;.001 msg msg Press e to END en7duse GROUP 1. Run title and other preliminaries DISPLAY Radioactive material generates heat within a horizontally- disposed cylindrical metal container, the outer surface of which is ribbed to promote convective cooling. This analysis focuses on the heat transfer and air flow in, and around, one half of one of the fins. Heat is supplied at a constant rate per unit area along the inner surface of the cylinder. Most of the heat is transferred from the metal to the air, but some is radiated away at a constant prescribed flux. A cylindrical domain of integration is used, the inner boundary of which corresponds to the inner surface of the container. The outer boundary of the domain extends well into the air. The coordinate x increases from zero at the top to 180 degrees (pi radians) at the bottom, for symmetry about the vertical plane through the cylinder is present. The large conductivity of the metal is contrived by enlarging the porosities for the cell faces in the metal. The heating of the air results in its upward motion, ie motion in the negative x sense, caused by buoyancy. ENDDIS The user-defined local variables are: NYC is the last radial cell in the metal cylinder; NYR is the last radial cell in the metal fin which protrudes from the cylinder; NZR is the number of axial cells extending from the radial symmetry plane in the fin to the edge of the fin; COND is the conductivity of the metal divided by the viscosity and the specific heat of the air; CP is the specific heat of the metal; FIXT is the ambient temperature raised to power 4; and T4 is the mean metal temperature raised to power 4. GROUP 3. X-direction grid specification GROUP 4. Y-direction grid specification GROUP 5. Z-direction grid specification GROUP 7. Variables stored, solved & named **For economy, point-by-point solution is used for velocities and temperature (the main diffusive links are z-directed in this case, and at present there is no means of solving simultaneously in z at the linear-equation level, except for pressure corrections which are solved whole field). Harmonic averaging is selected for the temperature equations by the last argument of SOLUTN... GROUP 8. Terms (in differential equations) & devices **Dissipation of mechanical energy into heat is presumed to be insignificant, so the built-in source for temperature is de-activated. GROUP 9. Properties of the medium (or media) GROUP 11. Initialization of variable or porosity fields **The following commands provide a realistic initial distribution for the temperature field... **The high conductivity of the metal is contrived by appropriately enlarging the cell-face porosities for cell faces which have metal on either side. The metal conductivity is 36.2 Watts per metre per degree. It is divided by the the viscosity and specific heat of the air... **Cell faces which are located at the metal-air interface require porosity factors of 2 to ensure the correct transfer of heat and momentum (ie friction) across the interface. The factor of 2 is a consequence of the uniform spacing used for the cells each side of the interface, and of the fact that the large metal conductivity results in the temperature at the interface being very nearly equal to the local bulk temperature of the metal. **The correctness of the foregoing porosity settings can be verified by printing the fields of the porosities. GROUP 13. Boundary conditions and special sources **Fix the velocities to zero within the solid... **Prescribed heat flux across inner cylindrical boundary **The pressures are fixed on the outer boundary of the domain for the cells where outflow is expected. **The stagnation pressures are set where inflow is expected along the outer boundary of the domain. **The Boussinesq approximation is used to represent the buoyancy force. **Set the presribed radiation flux... GROUP 17. Under-relaxation devices GROUP 22. Spot-value print-out GROUP 23. Field print-out and plot control ***actdem***