TALK=T;RUN(1,1)
  PHOTON USE
  p
  phi


  msg        CONVECTIVE COOLING OF A RADIALLY-RIBBED CYLINDER
  msg
  view z;rot 90
  norm
  msg        Velocity vectors:
  gr ou z 1;vec z 1 sh
  msg
  msg Press  to continue
  pause
  vec off;red
  msg        Pressure contours:
  con p1 z 1 sh;int 15
  msg
  msg Press  to continue
  pause
  con off;red
  msg        Temperature contours:
  con temp z 1 fi;.001
  msg
  msg Press e to END
  en7duse

    GROUP 1. Run title and other preliminaries
  DISPLAY
    Radioactive material generates heat within a  horizontally-
  disposed cylindrical metal container, the outer surface of
  which is ribbed to promote convective cooling. This analysis
  focuses on the heat transfer and air flow in, and around, one
  half of one of the fins.
    Heat is supplied at a constant rate per unit area along the
  inner surface of the cylinder. Most of the heat is transferred
  from the metal to the air, but some is radiated away at a
  constant prescribed flux. A cylindrical domain of integration is
  used, the inner boundary of which corresponds to the inner
  surface of the container. The outer boundary of the domain
  extends well into the air. The coordinate x increases from zero
  at the top to 180 degrees (pi radians) at the bottom, for
  symmetry about the vertical plane through the cylinder is present.
  The large conductivity of the metal is contrived by enlarging the
  porosities for the cell faces in the metal.
    The heating of the air results in its upward motion, ie motion
  in the negative x sense, caused by buoyancy.
  ENDDIS
    The user-defined local variables are:
  NYC is the last radial cell in the metal cylinder;
  NYR is the last radial cell in the metal fin which protrudes from
  the cylinder;
  NZR is the number of axial cells extending from the radial
  symmetry plane in the fin to the edge of the fin;
  COND is the conductivity of the metal divided by the viscosity
  and the specific heat of the air;
  CP is the specific heat of the metal;
  FIXT is the ambient temperature raised to power 4; and
  T4 is the mean metal temperature raised to power 4.

    GROUP 3. X-direction grid specification

    GROUP 4. Y-direction grid specification

    GROUP 5. Z-direction grid specification

    GROUP 7. Variables stored, solved & named
   **For economy, point-by-point solution is used for velocities
     and temperature (the main diffusive links are z-directed in
     this case, and at present there is no means of solving
     simultaneously in z at the linear-equation level, except for
     pressure corrections which are solved whole field).
     Harmonic averaging is selected for the temperature equations
     by the last argument of SOLUTN...

    GROUP 8. Terms (in differential equations) & devices
   **Dissipation of mechanical energy into heat is presumed to be
     insignificant, so the built-in source for temperature is
     de-activated.

    GROUP 9. Properties of the medium (or media)

    GROUP 11. Initialization of variable or porosity fields
   **The following commands provide a realistic initial distribution
     for the temperature field...
   **The high conductivity of the metal is contrived by
     appropriately enlarging the cell-face porosities for cell faces
     which have metal on either side. The metal conductivity is
     36.2 Watts per metre per degree. It is divided by the
     the viscosity and specific heat of the air...
   **Cell faces which are located at the metal-air interface require
     porosity factors of 2 to ensure the correct transfer of heat
     and momentum (ie friction) across the interface. The factor of
     2 is a consequence of the uniform spacing used for the cells
     each side of the interface, and of the fact that the large
     metal conductivity results in the temperature at the interface
     being very nearly equal to the local bulk temperature of the
     metal.
   **The correctness of the foregoing porosity settings can be
     verified by printing the fields of the porosities.

    GROUP 13. Boundary conditions and special sources
   **Fix the velocities to zero within the solid...
   **Prescribed heat flux across inner cylindrical boundary
   **The pressures are fixed on the outer boundary of the
     domain for the cells where outflow is expected.
   **The stagnation pressures are set where inflow is
     expected along the outer boundary of the domain.
   **The Boussinesq approximation is used to represent the
     buoyancy force.
   **Set the presribed radiation flux...

    GROUP 17. Under-relaxation devices

    GROUP 22. Spot-value print-out

    GROUP 23. Field print-out and plot control

  ***actdem***




  
************************************************************ Group 1. Run Title and Number ************************************************************ ************************************************************ TEXT(Convective Cooling Of Radial Fin ) ************************************************************ ************************************************************ IRUNN = 1 ;LIBREF = 14 ************************************************************ Group 2. Time dependence STEADY = T ************************************************************ Group 3. X-Direction Grid Spacing CARTES = F NX = 12 XULAST =3.142 XFRAC(1)=0.083333 ;XFRAC(3)=0.25 XFRAC(5)=0.416667 ;XFRAC(7)=0.583333 XFRAC(9)=0.75 ;XFRAC(11)=0.916667 ************************************************************ Group 4. Y-Direction Grid Spacing NY = 12 YVLAST =1. RINNER =1.14 ;SNALFA =0. Method of pairs used for grid setting. YFRAC(1)=-10. ;YFRAC(2)=0.0125 YFRAC(3)=2. ;YFRAC(4)=0.05 ************************************************************ Group 5. Z-Direction Grid Spacing PARAB = F NZ = 7 ZWLAST =1. Method of pairs used for grid setting. ZFRAC(1)=-4. ;ZFRAC(2)=2.5E-03 ZFRAC(3)=3. ;ZFRAC(4)=5.0E-03 ************************************************************ Group 6. Body-Fitted Coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd ONEPHS = T NAME(1)=P1 ;NAME(3)=U1 NAME(5)=V1 ;NAME(7)=W1 NAME(14)=TEMP ;NAME(148)=HPOR NAME(149)=EPOR ;NAME(150)=NPOR * Y in SOLUTN argument list denotes: * 1-stored 2-solved 3-whole-field * 4-point-by-point 5-explicit 6-harmonic averaging SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(U1,Y,Y,N,Y,N,Y) SOLUTN(V1,Y,Y,N,Y,N,Y) SOLUTN(W1,Y,Y,N,Y,N,Y) SOLUTN(TEMP,Y,Y,N,Y,N,Y) SOLUTN(HPOR,Y,N,N,N,N,N) SOLUTN(EPOR,Y,N,N,N,N,N) SOLUTN(NPOR,Y,N,N,N,N,N) EPOR = 149 ;HPOR = 148 ;NPOR = 150 ;VPOR = 0 ************************************************************ Group 8. Terms & Devices * Y in TERMS argument list denotes: * 1-built-in source 2-convection 3-diffusion 4-transient * 5-first phase variable 6-interphase transport TERMS(P1,Y,Y,Y,N,Y,Y) TERMS(U1,Y,Y,Y,Y,Y,Y) TERMS(V1,Y,Y,Y,Y,Y,Y) TERMS(W1,Y,Y,Y,Y,Y,Y) TERMS(TEMP,N,Y,Y,N,Y,N) DIFCUT =0. ;ZDIFAC =1. GALA = F ;ADDDIF = F ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1 ************************************************************ Group 9. Properties used if PRPS is not stored, and where PRPS = -1.0 if it is! RHO1 =1.163 ;TMP1 =0. EL1 =0. TSURR =0. ;TEMP0 =0. PRESS0 =0. DVO1DT =32.961601 ;DRH1DP =0. EMISS =0. ;SCATT =0. RADIA =0. ;RADIB =0. ENUL =1.8E-05 ;ENUT =0. PRNDTL(U1)=1. ;PRNDTL(V1)=1. PRNDTL(W1)=1. ;PRNDTL(TEMP)=0.7 PRT(U1)=1. ;PRT(V1)=1. PRT(W1)=1. ;PRT(TEMP)=1. CP1 =1. ;CP2 =1. ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initial field variables (PHIs) FIINIT(P1)=1.0E-10 ;FIINIT(U1)=-0.5 FIINIT(V1)=1.0E-10 ;FIINIT(W1)=1.0E-10 FIINIT(TEMP)=1.0E-10 ;FIINIT(HPOR)=1. FIINIT(EPOR)=1. ;FIINIT(NPOR)=1. PATCH(TALL ,LINVLY, 1, 12, 1, 12, 1, 7, 1, 1) INIT(TALL ,TEMP,-150. ,37. ) PATCH(TCYL ,LINVLY, 1, 12, 1, 1, 1, 7, 1, 1) INIT(TCYL ,TEMP,-120. ,75. ) PATCH(TFIN ,LINVLY, 1, 12, 2, 9, 1, 3, 1, 1) INIT(TFIN ,TEMP,-120. ,75. ) PATCH(CMP3 ,INIVAL, 1, 12, 1, 8, 1, 3, 1, 1) INIT(CMP3 ,NPOR,0. ,1200.864136 ) PATCH(CMP4 ,INIVAL, 1, 11, 1, 1, 1, 7, 1, 1) INIT(CMP4 ,EPOR,0. ,1200.864136 ) PATCH(CMP5 ,INIVAL, 1, 11, 2, 9, 1, 3, 1, 1) INIT(CMP5 ,EPOR,0. ,1200.864136 ) PATCH(CMP6 ,INIVAL, 1, 12, 1, 1, 1, 6, 1, 1) INIT(CMP6 ,HPOR,0. ,1200.864136 ) PATCH(CMP7 ,INIVAL, 1, 12, 2, 9, 1, 2, 1, 1) INIT(CMP7 ,HPOR,0. ,1200.864136 ) PATCH(CMP8 ,INIVAL, 1, 12, 1, 1, 4, 7, 1, 1) INIT(CMP8 ,NPOR,0. ,2. ) PATCH(CMP9 ,INIVAL, 1, 12, 2, 9, 3, 3, 1, 1) INIT(CMP9 ,HPOR,0. ,2. ) PATCH(CMP10 ,INIVAL, 1, 12, 9, 9, 1, 3, 1, 1) INIT(CMP10 ,NPOR,0. ,2. ) INIADD = F FSWEEP = 1 NAMFI =CHAM ************************************************************ Group 12. Patchwise adjustment of terms Patches for this group are printed with those for Group 13. Their names begin either with GP12 or & ************************************************************ Group 13. Boundary & Special Sources PATCH(CYLINDER,CELL , 1, 12, 1, 1, 1, 7, 1, 1) COVAL(CYLINDER,U1 , FIXVAL ,0. ) COVAL(CYLINDER,V1 , FIXVAL ,0. ) COVAL(CYLINDER,W1 , FIXVAL ,0. ) PATCH(FIN ,CELL , 1, 12, 2, 9, 1, 3, 1, 1) COVAL(FIN ,U1 , FIXVAL ,0. ) COVAL(FIN ,V1 , FIXVAL ,0. ) COVAL(FIN ,W1 , FIXVAL ,0. ) PATCH(HEATFLX ,SOUTH , 1, 12, 1, 1, 1, 7, 1, 1) COVAL(HEATFLX ,TEMP, FIXFLU ,1.796627 ) PATCH(EXIT ,NORTH , 1, 6, 12, 12, 1, 7, 1, 1) COVAL(EXIT ,P1 ,1000. ,0. ) COVAL(EXIT ,U1 ,0. ,0. ) COVAL(EXIT ,V1 ,0. ,0. ) COVAL(EXIT ,W1 ,0. ,0. ) COVAL(EXIT ,TEMP,0. ,0. ) PATCH(INLET ,NORTH , 7, 12, 12, 12, 1, 7, 1, 1) COVAL(INLET ,P1 ,-2.326 ,0. ) COVAL(INLET ,U1 ,0. , SAME ) COVAL(INLET ,V1 ,0. , SAME ) COVAL(INLET ,TEMP,0. ,0. ) PATCH(BUOYU ,PHASEM, 1, 11, 1, 12, 1, 7, 1, 1) COVAL(BUOYU ,U1 , FIXFLU , GRND3 ) PATCH(BUOYV ,PHASEM, 1, 12, 1, 11, 1, 7, 1, 1) COVAL(BUOYV ,V1 , FIXFLU , GRND3 ) PATCH(RADBOT ,NORTH , 1, 12, 1, 1, 4, 7, 1, 1) COVAL(RADBOT ,TEMP, FIXFLU ,-0.095879 ) PATCH(RADSIDE ,HIGH , 1, 12, 2, 9, 3, 3, 1, 1) COVAL(RADSIDE ,TEMP, FIXFLU ,-0.067304 ) PATCH(RADTOP ,NORTH , 1, 12, 9, 9, 1, 3, 1, 1) COVAL(RADTOP ,TEMP, FIXFLU ,-0.290899 ) XCYCLE = F EGWF = T WALLCO = GRND2 BUOYA =0. ; BUOYB =-1. BUOYC =0. ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 20 ;ISWC1 = 1 LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1 SELREF = T RESFAC =1.0E-02 ************************************************************ Group 16. Terminate Iterations LITER(P1)=20 ;LITER(U1)=10 LITER(V1)=10 ;LITER(W1)=10 LITER(TEMP)=20 ENDIT(P1)=1.0E-03 ;ENDIT(U1)=1.0E-03 ENDIT(V1)=1.0E-03 ;ENDIT(W1)=1.0E-03 ENDIT(TEMP)=1.0E-03 ************************************************************ Group 17. Relaxation RELAX(P1,LINRLX,0.3) RELAX(U1,FALSDT,1.) RELAX(V1,FALSDT,1.) RELAX(W1,FALSDT,1.) RELAX(TEMP,FALSDT,1.0E+09) OVRRLX =0. EXPERT = F ;NNORSL = F ************************************************************ Group 18. Limits VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10 VARMAX(U1)=1.0E+06 ;VARMIN(U1)=-1.0E+06 VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06 VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06 VARMAX(TEMP)=1.0E+10 ;VARMIN(TEMP)=-1.0E+10 VARMAX(HPOR)=1.0E+10 ;VARMIN(HPOR)=-1.0E+10 VARMAX(EPOR)=1.0E+10 ;VARMIN(EPOR)=-1.0E+10 VARMAX(NPOR)=1.0E+10 ;VARMIN(NPOR)=-1.0E+10 ************************************************************ Group 19. Data transmitted to GROUND PARSOL = F ISG62 = 1 ************************************************************ Group 20. Preliminary Printout ************************************************************ Group 21. Print-out of Variables INIFLD = F ;SUBWGR = F * Y in OUTPUT argument list denotes: * 1-field 2-correction-eq. monitor 3-selective dumping * 4-whole-field residual 5-spot-value table 6-residual table OUTPUT(P1,Y,Y,Y,Y,Y,Y) OUTPUT(U1,Y,Y,Y,Y,Y,Y) OUTPUT(V1,Y,Y,Y,Y,Y,Y) OUTPUT(W1,Y,Y,Y,Y,Y,Y) OUTPUT(TEMP,N,N,Y,Y,N,N) OUTPUT(HPOR,Y,N,Y,N,N,N) OUTPUT(EPOR,Y,N,Y,N,N,N) OUTPUT(NPOR,Y,N,Y,N,N,N) ************************************************************ Group 22. Monitor Print-Out IXMON = 6 ;IYMON = 6 ;IZMON = 4 NPRMON = 100000 ;NPRMNT = 1 ;TSTSWP = -1 UWATCH = T ;USTEER = T HIGHLO = F ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ;NUMCLS = 5 NXPRIN = 2 ;IXPRF = 1 ;IXPRL = 10000 NYPRIN = -1 ;IYPRF = 1 ;IYPRL = 10000 NZPRIN = -1 ;IZPRF = 1 ;IZPRL = 10000 XZPR = F ;YZPR = T IPLTF = 1 ;IPLTL = 20 ;NPLT = 1 ISWPRF = 1 ;ISWPRL = 100000 ITABL = 3 ;IPROF = 3 ABSIZ =0.5 ;ORSIZ =0.4 NTZPRF = 1 ;NCOLPF = 50 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20 PATCH(TXEQ1 ,CONTUR, 1, 1, 1, 12, 1, 7, 1, 1) PLOT(TXEQ1 ,TEMP,0. ,15. ) PATCH(TXEQ4 ,CONTUR, 4, 4, 1, 12, 1, 7, 1, 1) PLOT(TXEQ4 ,TEMP,0. ,15. ) PATCH(TXEQ6 ,CONTUR, 6, 6, 1, 12, 1, 7, 1, 1) PLOT(TXEQ6 ,TEMP,0. ,15. ) PATCH(TXEQ9 ,CONTUR, 9, 9, 1, 12, 1, 7, 1, 1) PLOT(TXEQ9 ,TEMP,0. ,15. ) PATCH(45DEG ,PROFIL, 3, 3, 2, 12, 7, 7, 1, 1) PLOT(45DEG ,U1 ,0. ,0. ) PLOT(45DEG ,TEMP,0. ,0. ) PATCH(90DEG ,PROFIL, 6, 6, 2, 12, 7, 7, 1, 1) PLOT(90DEG ,U1 ,0. ,0. ) PLOT(90DEG ,TEMP,0. ,0. ) PATCH(120DEG ,PROFIL, 8, 8, 2, 12, 7, 7, 1, 1) PLOT(120DEG ,U1 ,0. ,0. ) PLOT(120DEG ,TEMP,0. ,0. ) PATCH(165DEG ,PROFIL, 11, 11, 2, 12, 7, 7, 1, 1) PLOT(165DEG ,U1 ,0. ,0. ) PLOT(165DEG ,TEMP,0. ,0. ) ************************************************************ Group 24. Dumps For Restarts SAVE = T ;NOWIPE = F NSAVE =CHAM STOP