```
TITLE
************************************************************

photon use
p

msg the grid.press return for velocity vectors
gr y m;mirr y;pause
msg velocity vectors. press return for pressure contours
vec y m sh;pause;cl
msg pressure contours on the mid-plane.
mirr y;gr ou y m;view y;up x; con  p1 y m fi;0.0002
pause;cl
msg velocity profile downstream.
view z;up y;gr ou z m;vec z m sh
enduse

DISPLAY

The flow is isothermal and the example duct is a cylindrical
channel curved curved through 180 deg. The point of this case
is to display the good behaviour of PHOENICS with fully 3D
flows.

Since the 3D phenomena take place downstream of the bend, a
length of 8 diameters is considered. The upstream length is
only 2 diameters since the slight influence of the curved duct
in the inlet region.

ENDDIS
l(pause)
DISPLAY
It is possible to redefine the number of cells in each direction.
The 2D geometry can be changed in the following aspects:

- the angle Angu of the curvature.
- the lengths of the upstream and downstream regions.

ext2=8 D
<-------------->
*  * * * * * * *
*
Rc <-*---|O
*
*  * <-- U=1.29 m/s
<-->
ext1=2 D

Rc stands for the inner radius to the centre of the duct:
Rc/D = 3.375
ENDDIS
l(pause)
DISPLAY

Data (default):
----
Diameter: D=0.0445 m
Curved duct curvature radius: Rc=3.375*D = 0.1501 m
Inlet velocity : U= 1.29 m/s
Fluid Nature : Water
Kinematic viscosity: Enul= 1.E-6  m2/s
Reynolds Number: Re= U*D/Enul= 57.4E3

Physical models:
----------------
Turbulence Model : K-Epsilon

ENDDIS

************************************************************
Group 1. Run Title
TEXT(FLOW IN A 180 Deg CURVED DUCT                 )
************************************************************
Groups 3, 4, 5  Grid Information
* Overall number of cells, RSET(M,NX,NY,NZ,tolerance)
INTEGER(NZ1,NZ2,NZ3);REAL(Rc,Angu,ext1,ext2,Pi,lx)
Pi=3.1416

*Number of cells

*NZ1 stands for the upstream region.
NZ2 stands for the curved region.
NZ3 stands for the downstream region.

NZ1=5;NZ2=10;NZ3=10
NZ=NZ1+NZ2+NZ3

*NY is the discretisation in the radial direction
NY=10

*NX is the discretisation in the angular direction
NX=5