```
MB-FGE Test: Heat conduction in a 5-pointed star.
**************************************************************
DISPLAY
Heat conduction in a 5-pointed star (Chris J.Weire 16/3/94).

This is a  simple example of  a heat conduction  problem,
using 5  linked blocks.   The "star"  is heated  along  a
vertical line at its base, and cooled along its edges.

The links used  here are not  "natural", in the  sense of
being NORTH-SOUTH,  EAST-WEST or  HIGH-LOW. This  type of
link is currently only supported for scalar problems.

Q1-file contains Photon Use information.
---------------------------------------------------------
ENDDIS
L(PAUSE
**************************************************************
PHOTON USE
p ; ; ; ; ;

mgr 1 k 1 col 2
mgr 2 k 1 col 3
mgr 3 k 1 col 4
mgr 4 k 1 col 5
mgr 5 k 1 col 6
msg This is the grid, showing 5 blocks.  Press Return
pause
cl
mcon 1 temp k 1 fi
0.001
mcon 2 temp k 1 fi
0.001
mcon 3 temp k 1 fi
0.001
mcon 4 temp k 1 fi
0.001
mcon 5 temp k 1 fi
0.001
msg This is the Temperature field.
ENDUSE
GROUP 1. Run title and other preliminaries
TEXT(MB-FGE: Heat Conduction in a 5-pointed star
TITLE
INTEGER(NS);
REAL(PI,SPHT,COND,ANG,XP,YP)
PI= 3.14159
** NS is grid size
NS= 10
GROUP 6. Body-fitted coordinates or grid distortion
BFC= T; GSET(D,NS,NS,1); GSET(P,PC,0.,0.,0.)
ANG=2.*PI/10; XP=SIN(ANG);   YP=COS(ANG);    GSET(P,P1,XP,YP,0.0)
ANG=0.*PI/10; XP=2*SIN(ANG); YP=2.*COS(ANG); GSET(P,P2,XP,YP,0.0)
ANG=-2*PI/10; XP=SIN(ANG);   YP=COS(ANG);    GSET(P,P3,XP,YP,0.0)
GSET(L,L1,PC,P1,NS); GSET(L,L2,P1,P2,NS)
GSET(L,L3,P2,P3,NS); GSET(L,L4,P3,PC,NS)
GSET(F,F1,PC,-,P1,-,P2,-,P3,-); GSET(M,F1,+I+J,1,1,1,TRANS)
GSET(C,K:NZ+1:,F,K1,1,NS,1,NS,+,0.0,0.0,0.1)
DUMPC(MBGR1)
GSET(D,NS,NS,1)
ANG= 2.*PI/10+2*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P1,XP,YP,0.0)
ANG= 0.*PI/10+2*PI/5.; XP= 2.*SIN(ANG); YP= 2.*COS(ANG)
GSET(P,P2,XP,YP,0.0)
ANG=-2.*PI/10+2*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P3,XP,YP,0.0)
GSET(L,L1,PC,P1,NS); GSET(L,L2,P1,P2,NS)
GSET(L,L3,P2,P3,NS); GSET(L,L4,P3,PC,NS)
GSET(F,F1,PC,-,P1,-,P2,-,P3,-); GSET(M,F1,+I+J,1,1,1,TRANS)
GSET(C,K:NZ+1:,F,K1,1,NS,1,NS,+,0.,0.,0.1)
DUMPC(MBGR2)
GSET(D,NS,NS,1)
ANG= 2.*PI/10+4*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P1,XP,YP,0.0)
ANG= 0.*PI/10+4*PI/5.; XP= 2.*SIN(ANG); YP= 2.*COS(ANG)
GSET(P,P2,XP,YP,0.0)
ANG=-2.*PI/10+4*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P3,XP,YP,0.0)
GSET(L,L1,PC,P1,NS); GSET(L,L2,P1,P2,NS)
GSET(L,L3,P2,P3,NS); GSET(L,L4,P3,PC,NS)
GSET(F,F1,PC,-,P1,-,P2,-,P3,-); GSET(M,F1,+I+J,1,1,1,TRANS)
GSET(C,K:NZ+1:,F,K1,1,NS,1,NS,+,0.,0.,0.1)
DUMPC(MBGR3)
GSET(D,NS,NS,1)
ANG= 2.*PI/10+6*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P1,XP,YP,0.0)
ANG= 0.*PI/10+6*PI/5.; XP= 2.*SIN(ANG); YP= 2.*COS(ANG)
GSET(P,P2,XP,YP,0.0)
ANG=-2.*PI/10+6*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P3,XP,YP,0.0)
GSET(L,L1,PC,P1,NS); GSET(L,L2,P1,P2,NS)
GSET(L,L3,P2,P3,NS); GSET(L,L4,P3,PC,NS)
GSET(F,F1,PC,-,P1,-,P2,-,P3,-); GSET(M,F1,+I+J,1,1,1,TRANS)
GSET(C,K:NZ+1:,F,K1,1,NS,1,NS,+,0.,0.,0.1)
DUMPC(MBGR4)
GSET(D,NS,NS,1)
ANG= 2.*PI/10+8*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P1,XP,YP,0.0)
ANG= 0.*PI/10+8*PI/5.; XP= 2.*SIN(ANG); YP= 2.*COS(ANG)
GSET(P,P2,XP,YP,0.0)
ANG=-2.*PI/10+8*PI/5.; XP= SIN(ANG);    YP= COS(ANG)
GSET(P,P3,XP,YP,0.0)
GSET(L,L1,PC,P1,NS); GSET(L,L2,P1,P2,NS)
GSET(L,L3,P2,P3,NS); GSET(L,L4,P3,PC,NS)
GSET(F,F1,PC,-,P1,-,P2,-,P3,-); GSET(M,F1,+I+J,1,1,1,TRANS)
GSET(C,K:NZ+1:,F,K1,1,NS,1,NS,+,0.,0.,0.1)
DUMPC(MBGR5)
GVIEW(Z);  VIEW
** Links not natural, so generated manually
MPATCH(1,MBL1.2,SOUTH,1,NS,1, 1,1,NZ,1,LSTEP)
MPATCH(2,MBL2.1,WEST, 1, 1,1,NS,1,NZ,1,LSTEP)
MPATCH(2,MBL2.3,SOUTH,1,NS,1, 1,1,NZ,1,LSTEP)
MPATCH(3,MBL3.2,WEST, 1, 1,1,NS,1,NZ,1,LSTEP)
MPATCH(3,MBL3.4,SOUTH,1,NS,1, 1,1,NZ,1,LSTEP)
MPATCH(4,MBL4.3,WEST, 1, 1,1,NS,1,NZ,1,LSTEP)
MPATCH(4,MBL4.5,SOUTH,1,NS,1, 1,1,NZ,1,LSTEP)
MPATCH(5,MBL5.4,WEST, 1, 1,1,NS,1,NZ,1,LSTEP)
MPATCH(5,MBL5.1,SOUTH,1,NS,1, 1,1,NZ,1,LSTEP)
MPATCH(1,MBL1.5,WEST, 1, 1,1,NS,1,NZ,1,LSTEP)
GROUP 7. Variables stored, solved & named
SOLVE(C1); NAME(C1)= TEMP; STORE(VPOR)
GROUP 8. Terms in differential equations & devices
TERMS(TEMP,N,N,Y,N,Y,Y)
GROUP 9. Properties of the medium (or media)
SPHT= 500.0; COND= 400.0; ENUL= 1.0; RHO1= 1.0E4;
PRNDTL(TEMP)= SPHT*ENUL*RHO1/COND
GROUP 11. Initialization of variable or porosity fields
FIINIT(TEMP)= 0.0
GROUP 13. Boundary conditions and special sources
MPATCH(3,HEAT3,CELL,1,NS,1, 1,1,NZ,1,LSTEP)
MPATCH(4,HEAT4,CELL,1, 1,1,NS,1,NZ,1,LSTEP)
COVAL(HEAT3,TEMP,FIXVAL,100.); COVAL(HEAT4,TEMP,FIXVAL,100.)
MPATCH(1,SINK1,EWALL, NS,NS,  1,NS, 1,1, 1,LSTEP)
MPATCH(1,SINK2,NWALL,  1,NS, NS,NS, 1,1, 1,LSTEP)
MPATCH(2,SINK3,EWALL, NS,NS,  1,NS, 1,1, 1,LSTEP)
MPATCH(2,SINK4,NWALL,  1,NS, NS,NS, 1,1, 1,LSTEP)
MPATCH(3,SINK5,EWALL, NS,NS,  1,NS, 1,1, 1,LSTEP)
MPATCH(3,SINK6,NWALL,  1,NS, NS,NS, 1,1, 1,LSTEP)
MPATCH(4,SINK7,EWALL, NS,NS,  1,NS, 1,1, 1,LSTEP)
MPATCH(4,SINK8,NWALL,  1,NS, NS,NS, 1,1, 1,LSTEP)
MPATCH(5,SINK9,EWALL, NS,NS,  1,NS, 1,1, 1,LSTEP)
MPATCH(5,SINK10,NWALL,  1,NS, NS,NS, 1,1, 1,LSTEP)
DO II=1,10
+ COVAL(SINK:II:,TEMP,FIXVAL,0.)
ENDDO
GROUP 15. Termination of sweeps
LSWEEP= 10; TSTSWP= -1;  LITER(TEMP)=-50
GROUP 19. Data communicated by satellite to GROUND
* LSG4 = T, activates nonorthogonality treatment.
CSG3= LCRU; LSG4= T
GROUP 22. Spot-value print-out
IXMON = 3; IYMON = 3; IZMON = 1
```