GROUP 1. Run title and other preliminaries TEXT(YX LAMINAR WALL-DRIVEN CAVITY TITLE mesg( PC486/50 time last reported as 3.0 min DISPLAY Numerical Schemes validation example: 2-d x-y, Cartesian, steady, elliptic simulation The case considered is that of steady, incompressible, laminar recirculating flow inside a lid-driven cavity. The geometry is a 1m square cavity with no inflow or outflow. The flow is driven by as moving wall of -1m/s at the top of cavity. The Reynolds number based on cavity height is 1000. The calculation may be performed with any of the 16 convection schemes in PHOENICS, although here the case is set up to be run with one of 3 linear schemes or 2 non-linear schemes. ENDDIS This case is a widely-used test problem for assessing the accuracy and stability of various numerical methods. It serves as a useful test case owing to the substantial skewness of the flow streamlines relative to the Cartesian mesh. The numerical results of Ghia et al ( J. Comp. Physics, Vol.48, p387-411, 1982 ) for Re=100, 400, 1000, 3200 and 5000 are used by researchers as benchmark solutions. PHOTON USE p 0.20443E+04 0.15633E+04 CR gr ou z 1;vec z 1 sh stream 2d z 1 -.113 0 10 stream 2d z 1 0. .235e-2 10 msg streamlines and vectors msg pressto end pause ENDUSE AUTOPLOT USE file phi 5 d 1 u1 x 11;plot;swap;scale;level x 0 msg horizontal velocity profile at x/h=0.5 msg press to end pause ENDUSE CHAR(SCHM);REAL(RENO,ULID,YCAV,RLXFAC) MESG(Enter Reynolds number - default 1000 READVDU(RENO,REAL,1000.) ULID=1.0;YCAV=1.0 GROUP 2. Transience; time-step specification GROUP 3. X-direction grid specification IREGX=1; GRDPWR(X,-21,YCAV,1.4) GROUP 4. Y-direction grid specification IREGY=1; GRDPWR(Y,-21,YCAV,1.4) GROUP 5. Z-direction grid specification GROUP 6. Body-fitted coordinates or grid distortion GROUP 7. Variables stored, solved & named SOLVE(P1,U1,V1);SOLUTN(U1,Y,Y,N,N,N,N);SOLUTN(V1,Y,Y,N,N,N,N) GROUP 8. Terms (in differential equations) & devices MESG( Enter required convection scheme MESG( Default: CUS - Cubic upwind MESG( The options are: MESG( CUS - Cubic upwind MESG( FOU - 1st order upwind MESG( QUI - QUICK MESG( KOR - KOREN - bounded QUICK MESG( VAN - MUSCL - bounded FROMM READVDU(SCHM,CHAR,CUS) CASE :SCHM: OF WHEN CUS,3 + MESG(Cubic upwind scheme + SCHEME(CUS,U1,V1) WHEN FOU,3 + MESG(First-order upwind scheme + DIFCUT=0 WHEN QUI,3 + MESG(Quadratic upwind scheme - QUICK + SCHEME(QUICK,U1,V1) WHEN KOR,3 + MESG(KOREN scheme - bounded QUICK + SCHEME(KOREN,U1,V1) WHEN VAN,3 + MESG(Van Leer MUSCL scheme + SCHEME(MUSCL,U1,V1) ENDCASE GROUP 9. Properties of the medium (or media) ENUL=ULID*YCAV/RENO GROUP 13. Boundary conditions and special sources ** South wall, at rest WALL (SOUTH,SOUTH,#1,#NREGX,#1,#1,#1,#1,1,1) COVAL(SOUTH,U1,1.0,0.0) ** North wall, moving WALL (MOVE,NORTH,#1,#NREGX,#NREGY,#NREGY,#1,#1,1,1) COVAL(MOVE,U1,1.0,-ULID) ** West wall, at rest WALL (WEST,WEST,#1,#1,#1,#NREGY,#1,#1,1,1) COVAL(WEST,V1,1.0,0.0) ** East wall, at rest WALL (EAST,EAST,#NREGX,#NREGX,#1,#NREGY,#1,#1,1,1) COVAL(EAST,V1,1.0,0.0) ** Pressure relief PATCH(FIXPRESS,CELL,NX/2,NX/2,NY/2,NY/2,1,1,1,1) COVAL(FIXPRESS,P1,FIXP,0.0) COVAL(FIXPRESS,U1,ONLYMS,0.0);COVAL(FIXPRESS,V1,ONLYMS,0.0) GROUP 15. Termination of sweeps LSWEEP=3000;TSTSWP=-1 GROUP 16. Termination of iterations LITER(U1)=5;LITER(V1)=5 GROUP 17. Under-relaxation devices RLXFAC=YVLAST/(NY*1.0);RELAX(P1,LINRLX,1.0) RELAX(U1,FALSDT,5.0*RLXFAC);RELAX(V1,FALSDT,5.0*RLXFAC) GROUP 22. Spot-value print-out IXMON=NX/2;IYMON=NY-1;ITABL=3;NPLT=10 GROUP 23. Field print-out and plot control