#N101 #cls TEXT(point source, best schemes & CLDA) TITLE DISPLAY This case shows that, for the diagonal-flow point-source problem of case n121, the CLDA is better that any other. Alter the ratio of v1 to U1 to compare them at other angles. ENDDIS REAL(RATIO);RATIO=1.0 mesg(Ratio =:ratio: Insert other value if required READVDU(RATIO,REAL,RATIO) FLOLY=2.0*RATIO/(1.0+RATIO) FLOLX=2.0/(1.0+RATIO) FIINIT(U1)=FLOLX; FIINIT(V1)=FLOLY FLOLY FLOLX ENDDIS PATCH(SOURCE,VOLUME,3,3,3,3,1,NZ,1,LSTEP) DO II=NPH1,NPHI Insert zero values at south and west inlets COVAL(INL1,:II:,FLOLX,0.0);COVAL(INL2,:II:,FLOLY,0.0) Insert fixed source in cell at IX=3, IY=3 COVAL(SOURCE,:II:,FIXFLU,40.0) ENDDO Switch off the poorly-perfoming schemes SOLUTN(3SOL,Y,N,N,N,N,N); SOLUTN(CSOL,Y,N,N,N,N,N) SOLUTN(FSOL,Y,N,N,N,N,N); SOLUTN(LSOL,Y,N,N,N,N,N) SOLUTN(OSOL,Y,N,N,N,N,N); SOLUTN(QSOL,Y,N,N,N,N,N) SOLUTN(VSOL,Y,N,N,N,N,N) Introduce the Conservative Low-Dispersion Algorithm SOLVE(CWES,CEAS,CSOU,CNOR) SOLUTN(CWES,P,P,N,Y,P,P); SOLUTN(CEAS,P,P,N,Y,P,P) SOLUTN(CNOR,P,P,N,Y,P,P); SOLUTN(CSOU,P,P,N,Y,P,P) TERMS(CWES,N,N,N,N,Y,Y); TERMS(CEAS,N,N,N,N,Y,Y) TERMS(CSOU,N,N,N,N,Y,Y); TERMS(CNOR,N,N,N,N,Y,Y) PATCH(CLDA,CELL,1,NX,1,NY,1,NZ,1,LSTEP) COVAL(CLDA,CNOR,GRND,GRND); COVAL(CLDA,CSOU,GRND,GRND) COVAL(CLDA,CEAS,GRND,GRND); COVAL(CLDA,CWES,GRND,GRND) and corresponding boundary conditions COVAL(INL1,CWES,FLOLX,0.0);COVAL(INL2,CWES,FLOLY,0.0) COVAL(SOURCE,CWES,FIXFLU,20.0*flolx) COVAL(INL1,CEAS,FLOLX,0.0);COVAL(INL2,CEAS,FLOLY,0.0) COVAL(INL1,CNOR,FLOLX,0.0);COVAL(INL2,CNOR,FLOLY,0.0) COVAL(INL1,CSOU,FLOLX,0.0);COVAL(INL2,CSOU,FLOLY,0.0) COVAL(SOURCE,CSOU,FIXFLU,20.0*floly) Provide for line-printer profile output at IY=3*NY/4 PATCH(NOREDGE1,PROFIL,1,NX,3*NY/4,3*NY/4,1,NZ,1,LSTEP) DO II=NPH1,NPH1+7 COVAL(NOREDGE1,:II:,0.0,1.0) ENDDO PATCH(NOREDG2,PROFIL,1,NX,3*NY/4,3*NY/4,1,NZ,1,LSTEP) DO II=NPH1+8,NPHI COVAL(NOREDG2,:II:,0.0,1.0) ENDDO COVAL(NOREDG2,CNOR,0.0,1.0) nxprin=1;ixprf=2;ixprl=6; nyprin=1;iyprf=2;iyprl=6 STOP