PHOTON USE
p
set prop off
gr ou z 1 x 12 25 y 19 21
gr ou z 1 x 12 25 y 4 18
gr ou z 1 x 14 23 y 7 18
gr ou z 1 x 12 25 y 22 31
gr ou z 1 x 14 23 y 22 29
*gr ou z 1 x 11 11 y 25 28
*gr ou z 1 x 26 26 y 25 28
gr z 1 x 11 11 y 20 21
gr z 1 x 26 26 y 20 21
*gr ou z 1 x 26 26 y 7 10
*gr ou z 1 x 11 11 y 15 18
gr ou z 1 x 14 16 y 1 3
gr ou z 1 x 21 23 y 1 3
gr ou z 1 x 11 11 y 16 17
gr ou x 11 11 y 15 18
gr ou z 1 x 26 26 y 8 9
gr ou x 27 y 7 10
gr ou z 1 x 11 11 y 26 27
gr ou x 11 11 y 25 28
gr ou z 1 x 26 26 y 26 27
gr ou x 27 y 25 28
gr ou x 15 15 y 19 21
gr ou x 16 16 y 19 21
gr ou x 17 17 y 19 21
gr ou x 18 18 y 19 21
gr ou x 19 19 y 19 21
gr ou x 20 20 y 19 21
gr ou x 21 21 y 19 21
gr ou x 22 22 y 19 21
gr ou x 23 23 y 19 21
gr ou z 1 x 15 22 y 8 18
gr ou z 1 x 16 21 y 9 18
gr ou z 1 x 17 20 y 10 18
gr ou z 1 x 18 19 y 11 18
gr ou y 11 11 x 17 23
gr ou y 15 15 x 14 20
gr ou x 19 19 y 12 29
set vec comp uu1 vv1 -
vec z 1 sh
set vec comp u2 v2 -
vec z 1
msg( Shell and tube fluid velocity vectors
pause
vec cl
red
set vec comp u1 v1 -
vec z 1 x 11 m sh
msg( Thermal displacement vectors in shell and tube bundle
ENDUSE
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
DISPLAY
A 2D shell-and-tube heat-exchanger is used to exemplify
essential ideas of HEXAGON model, which is probably the
first to show how the thermo-hydraulics of the
shell-side and tube-side fluids could be simultaneously
computed with the displacements and thermal stresses in
tubes and shell to be included in a SFT,
Solid-Fluid-Thermal, heat-exchanger analysis.
The case illustrates the use a single computer program
to calculate from the partial-differential equations
governing relevant fluid processes the distributions of:
* shell-side fluid velocity components;
* the corresponding temperatures and pressures;
* the tube-side fluid velocity components;
* the corresponding temperatures and pressures;
* the tube metal temperatures; and
* the displacements and stresses in the tubes and the shell.
The heat exchanger considered is an imaginary one,
having two baffles within the shell, with the U-bend
tubes arranged in array and header distributing the
in-fluid between the tubes and collecting out-fluid.
No attempt has been made to pick-up and implement the
actual resistance formulae which are widely used in
thermal engineering. But because PLANT is used to
represent them, the artificial formulae can be easily
replaced by required ones.
The heat exchanger is a rectangular box, 2.0m high, 1m
wide and 1m long. It consists of the header, the hight
of which is 0.8m and shell closed at the bottom and open
at the top. The header is divided into two halfes by a
vertical plate.
The shell is uniformly filled with the tubes. The tube
fluid (water) enters the header through the inlet at its
west wall, flows downwards in west half of the shell,
turns through the U bend at the bottom and rises upward
in the other shell half to enter the east half of the
header going out through the outlet at header east side.
The shell fluid ( air ) entering the shell through the
inlet at the east wall is made to pass between two
baffles in a zig-zag manner, until it goes out through
the outlet at the top of the west wall of shell.
Only X-Y plane of the exchanger is included in the
calculation domain, because of 2D-nature of analysis.
A uniform 26*32*1 grid is used, to cover computational
space.
PLANT is used to:
* set and/or compute the fluid properties in sub-domains;
* introduce the non-linear flow resistances ;
* calculate the distribution of overall heat transfer
coefficient;
* calculate the distribution of the tube metal
temperatures;
* link the sub-domains for data transfer and
manipulations and
* output data processing.
ENDDIS
PLANT information :
* Data input groups used: 9, 13, 19
* Ground groups planted : 9, 13, 19-6
* Headings used : PRPT??,
* Functions used : None
* Commands used : REGION
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
TEXT( HEXAGON 2D : SFT ANALYSIS FOR A MODEL HEAT EXCHANGER
===========================================================
Whole domain settings
===========================================================
REAL(U1IN,LENGTH,HIGHT);U1IN=1.0;LENGTH=2.6;HIGHT=3.2
GRDPWR(X,26,LENGTH,1.);GRDPWR(Y,32,HIGHT,1.)
STORE(EPOR,NPOR)
STORE(PRPS,DEN1,VISL,MARK)
SOLVE(P1,U1,V1,H1)
STORE(U2,V2)
NAME(H1)=TEMP
TERMS(TEMP,N,Y,Y,N,Y,N)
+ SOLVE(TEM1)
+ SOLUTN(TEM1,Y,Y,Y,N,N,Y)
+ TERMS(TEM1,N,Y,Y,Y,Y,Y)
+ FIINIT(TEM1)=0.
INIADD=F
PRNDTL(TEMP)=.702
FIINIT(U1)=U1IN
LSWEEP=400
RESFAC=1.E-8
RELAX(P1,LINRLX,0.25)
RELAX(U1,FALSDT,.075);RELAX(V1,FALSDT,.075)
RELAX(TEMP,FALSDT,3.)
RELAX(TEM1,FALSDT,1.E4)
IXMON=18;IYMON=5;NXPRIN=1;NYPRIN=1
TSTSWP=-1
NAMSAT=MOSG
===========================================================
Sub-domain organization
===========================================================
** Provide the MARK distribution as a marker to
distingish:
header-flow domain : MARK=1,
tube-side-flow domain : MARK=2
shell-side-flow domain : MARK=3
header thermal domain : MARK=4
shell-side-thermal domain : MARK=5 and
tube-wall-thermal domain : MARK=100
** Provide the PRPS distribution for :
shell material : PRPS=111,
tubesheet material : PRPS=103 and
tube wall material : PRPS=100
FIINIT(PRPS)=111.
INTEGER(NNN); NNN=12; IG(1)=NNN
PATCH(BACGRND,INIVAL,12,25,1,31,1,NZ,1,1)
INIT( BACGRND,PRPS, 0.000E+00, 111.)
PATCH(HEADSIDE,INIVAL,1,10,2.*NNN+1,NY,1,NZ,1,1)
INIT( HEADSIDE,MARK, 0.000E+00, 1.)
+ INIT( HEADSIDE,PRPS, 0.000E+00, 0.)
PATCH(TUBESIDE,INIVAL,1,10,NNN+1,24,1,NZ,1,1)
INIT( TUBESIDE,MARK, 0.000E+00, 2.)
+ INIT( TUBESIDE,PRPS, 0.000E+00, 0.)
PATCH(SHELSIDE,INIVAL,1,10,1,NNN,1,NZ,1,1)
INIT( SHELSIDE,MARK, 0.000E+00, 3.)
+ INIT( SHELSIDE,PRPS, 0.000E+00, 0.)
PATCH(TUBSHEET,INIVAL,11,26,19,21,1,NZ,1,1)
INIT( TUBSHEET,PRPS, 0.000E+00, 103.)
PATCH(ADDHEAD,INIVAL,14,23,22,29,1,NZ,1,1)
INIT( ADDHEAD,PRPS, 0.000E+00, 0.)
INIT( ADDHEAD,MARK, 0.000E+00, 4.)
PATCH(ADDSHELL,INIVAL,14,23,7,18,1,NZ,1,1)
INIT( ADDSHELL,PRPS, 0.000E+00, 0.)
INIT( ADDSHELL,MARK, 0.000E+00, 5.)
PATCH(TUBEWALL,INIVAL,16,21,9,18,1,NZ,1,1)
INIT( TUBEWALL,PRPS, 0.000E+00, 100.)
INIT( TUBEWALL,MARK, 0.000E+00, 100.)
PATCH(SUPOR1,INIVAL,11,13,1,3,1,NZ,1,1)
INIT( SUPOR1,PRPS, 0.000E+00, 0.)
PATCH(SUPOR2,INIVAL,17,20,1,3,1,NZ,1,1)
INIT( SUPOR2,PRPS, 0.000E+00, 0.)
PATCH(SUPOR3,INIVAL,24,26,1,3,1,NZ,1,1)
INIT( SUPOR3,PRPS, 0.000E+00, 0.)
PATCH(WESLAYER,INIVAL,11,11,1,32,1,NZ,1,1)
INIT( WESLAYER,PRPS, 0.000E+00, 0.0)
PATCH(EASLAYER,INIVAL,26,26,1,32,1,NZ,1,1)
INIT( EASLAYER,PRPS, 0.000E+00, 0.0)
PATCH(NORLAYER,INIVAL,11,26,32,32,1,NZ,1,1)
INIT( NORLAYER,PRPS, 0.000E+00, 0.0)
** Separate tube-fluid and shel-fluid sub-domains.
CONPOR(0.0,NORTH,1,10,NNN,NNN,1,NZ)
** Separate thermal-fluid and stress analysis sub-domains.
CONPOR(0.0,EAST,10,10,1,NY,1,NZ)
** Provide tube bank porosities.
CONPOR(0.0,EAST,5,5,18,NY,1,NZ)
CONPOR(0.0,NORTH,1,7,8,8,1,NZ)
CONPOR(0.0,NORTH,4,10,4,4,1,NZ)
+ CONPOR(0.5,NORTH,2,9,NNN+1,24,1,NZ)
+ CONPOR(0.5,EAST, 2,9,NNN+2,24,1,NZ)
** Provide inserts by way of blockages to
simulate header dividing plate, U-turnes,
and baffles.
CONPOR(0.0,NORTH,5,6,16,16,1,NZ)
CONPOR(0.0,NORTH,4,7,15,15,1,NZ)
CONPOR(0.0,NORTH,3,8,14,14,1,NZ)
CONPOR(0.0,NORTH,2,9,NNN+1,NNN+1,1,NZ)
+ CONPOR(0.0,EAST,1,1,14,24,1,NZ)
+ CONPOR(0.0,EAST,2,2,15,24,1,NZ)
+ CONPOR(0.0,EAST,3,3,16,24,1,NZ)
+ CONPOR(0.0,EAST,4,4,17,24,1,NZ)
+ CONPOR(0.0,EAST,5,5,18,24,1,NZ)
+ CONPOR(0.0,EAST,6,6,17,24,1,NZ)
+ CONPOR(0.0,EAST,7,7,16,24,1,NZ)
+ CONPOR(0.0,EAST,8,8,15,24,1,NZ)
+ CONPOR(0.0,EAST,9,9,14,24,1,NZ)
===========================================================
Property settings
===========================================================
** Settings for the calculation of wall
distances in the header and in baffled
shell side.
DISWAL
+ WALL(NL1N,NORTH,1,7,8,8,1,NZ,1,1)
+ COVAL(NL1N,LTLS,1.,0.0)
+ WALL(NL1S,SOUTH,1,7,9,9,1,NZ,1,1)
+ COVAL(NL1S,LTLS,1.,0.0)
WALL(NL2N,NORTH,4,10,4,4,1,NZ,1,1)
COVAL(NL2N,LTLS,1.,0.0)
WALL(NL2S,SOUTH,4,10,5,5,1,NZ,1,1)
COVAL(NL2S,LTLS,1.,0.0)
+ WALL(NL3N,NORTH,1,10,12,12,1,NZ,1,1)
+ COVAL(NL3N,LTLS,1.,0.0)
WALL(NL3S,SOUTH,1,10,1,1,1,NZ,1,1)
COVAL(NL3S,LTLS,1.,0.0)
+ WALL(NL4W1,WEST,1,1,1,9,1,NZ,1,1)
+ COVAL(NL4W1,LTLS,1.,0.0)
WALL(NL4W2,WEST,1,1,12,12,1,NZ,1,1)
COVAL(NL4W2,LTLS,1.,0.0)
+ WALL(NL4E1,EAST,10,10,1,1,1,NZ,1,1)
+ COVAL(NL4E1,LTLS,1.,0.0)
WALL(NL4E1,EAST,10,10,4,12,1,NZ,1,1)
COVAL(NL4E1,LTLS,1.,0.0)
+ WALL(NL5N1,NORTH,1,10,NY,NY,1,NZ,1,1)
+ COVAL(NL5N1,LTLS,1.,0.0)
WALL(NL5W1,WEST,1,1,25,28,1,NZ,1,1)
COVAL(NL5W1,LTLS,1.,0.0)
+ WALL(NL5W2,WEST,1,1,31,32,1,NZ,1,1)
+ COVAL(NL5W2,LTLS,1.,0.0)
WALL(NL5W3,WEST,6,6,25,ny,1,NZ,1,1)
COVAL(NL5W3,LTLS,1.,0.0)
+ WALL(NL5E1,EAST,10,10,25,28,1,NZ,1,1)
+ COVAL(NL5E1,LTLS,1.,0.0)
WALL(NL5E2,EAST,10,10,31,32,1,NZ,1,1)
COVAL(NL5E2,LTLS,1.,0.0)
+ WALL(NL5E3,EAST,5,5,25,ny,1,NZ,1,1)
+ COVAL(NL5E3,LTLS,1.,0.0)
PATCH(FIXL,CELL,1,10,13,24,1,NZ,1,1)
COVAL(FIXL,LTLS,FIXVAL,0.)
RHO1=GRND
ENUL=GRND
===========================================================
Thermal-fluid conditions settings
===========================================================
** Set the inflow and outflow conditions
* West boundary; tube-fluid inlet ;
2 cells in header west wall
PATCH(INTUBE,WEST,1,1,29,30,1,NZ,1,1)
COVAL(INTUBE,P1,FIXFLU,1000.*U1IN)
COVAL(INTUBE,U1,ONLYMS,U1IN)
COVAL(INTUBE,TEMP,ONLYMS,0.0)
* East boundary; tube-fluid outlet ;
2 cells in header east wall
PATCH(OUTUBE,EAST,10,10,29,30,1,NZ,1,1)
COVAL(OUTUBE,P1,1000.,0.)
* East boundary; shell-fluid inlet ;
2 cells in bottom of shell west wall
PATCH(INSHEL,EAST,10,10,2,3,1,NZ,1,1)
COVAL(INSHEL,P1,FIXFLU,1.2*U1IN)
COVAL(INSHEL,U1,ONLYMS,-U1IN)
COVAL(INSHEL,TEMP,ONLYMS,1.0)
* West boundary; shell-fluid outlet ;
2 cells in header east wall
PATCH(OUSHEL,WEST,1,1,10,11,1,NZ,1,1)
COVAL(OUSHEL,P1,1000.,0.)
===========================================================
Stress analysis
===========================================================
** General settings
BOOLEAN(CALSTR)
REAL(EXCOLI,EXCOC1,EXCOC2,STIFFN,STIFC1,STIFC2,DSTRSW,DSTRSE,DSTRSS)
REAL(POISSN)
STRA=T;CALSTR=T
STIFFN=2.e11
STIFC1=0.0;STIFC2=0.0
EXCOLI=1.e-03
EXCOC1=0.0;EXCOC2=0.0
POISSN=.3333
ISOLX=0;ISOLY=0;ISOLZ=0
** Zero direct-stress condition on bottom shell side
* West part
PATCH(BASEW,NORTH,12,13,3,3,1,NZ,1,LSTEP)
COVAL(BASEW,V1,FIXFLU,0.0)
* Middle part
PATCH(BASEM,NORTH,17,20,3,3,1,NZ,1,LSTEP)
COVAL(BASEM,V1,FIXFLU,0.0)
* East part
PATCH(BASEE,NORTH,24,25,3,3,1,NZ,1,LSTEP)
COVAL(BASEE,V1,FIXFLU,0.0)
** Zero direct-stress condition on the supports sides
* 1st support west side
PATCH(SUP1W,EAST,13,13,1,3,1,NZ,1,LSTEP)
COVAL(SUP1W,U1,FIXFLU,0.0)
* 1st support east side
PATCH(SUP1E,EAST,16,16,1,3,1,NZ,1,LSTEP)
COVAL(SUP1E,U1,FIXFLU,0.0)
* 2nd support east side
PATCH(SUP2W,EAST,20,20,1,3,1,NZ,1,LSTEP)
COVAL(SUP2W,U1,FIXFLU,0.0)
* 2nd support west side
PATCH(SUP2E,EAST,23,23,1,3,1,NZ,1,LSTEP)
COVAL(SUP2E,U1,FIXFLU,0.0)
** Zero direct-stresses on outer shell sides
* West side
PATCH(OUWW,EAST,11,11,4,31,1,NZ,1,LSTEP)
COVAL(OUWW,U1,FIXFLU,0.0)
* East side
PATCH(OUWE,EAST,25,25,4,31,1,NZ,1,LSTEP)
COVAL(OUWE,U1,FIXFLU,0.0)
* North side
PATCH(OUWN,NORTH,12,25,31,31,1,NZ,1,LSTEP)
COVAL(OUWN,V1,FIXFLU,0.0)
** Zero direct-stresses on inner header sides
* North side
PATCH(HEDWN,NORTH,14,23,29,29,1,NZ,1,LSTEP)
COVAL(HEDWN,V1,FIXFLU,0.0)
* South side
PATCH(HEDWS,NORTH,14,23,21,21,1,NZ,1,LSTEP)
COVAL(HEDWS,V1,FIXFLU,0.0)
* West side
PATCH(HEDWW,EAST,13,13,22,29,1,NZ,1,LSTEP)
COVAL(HEDWW,U1,FIXFLU,0.0)
* East side
PATCH(HEDWE,EAST,23,23,22,29,1,NZ,1,LSTEP)
COVAL(HEDWE,U1,FIXFLU,0.0)
** Zero direct-stresses inner shell sides
* North-west side
PATCH(SHWNW,NORTH,14,15,18,18,1,NZ,1,LSTEP)
COVAL(SHWNW,V1,FIXFLU,0.0)
* North-east side
PATCH(SHWNE,NORTH,22,23,18,18,1,NZ,1,LSTEP)
COVAL(SHWNE,V1,FIXFLU,0.0)
* South side
PATCH(SHWS,NORTH,14,23,6,6,1,NZ,1,LSTEP)
COVAL(SHWS,V1,FIXFLU,0.0)
* East side
PATCH(SHWW,EAST,13,13,7,18,1,NZ,1,LSTEP)
COVAL(SHWW,U1,FIXFLU,0.0)
* West side
PATCH(SHWE,EAST,23,23,7,18,1,NZ,1,LSTEP)
COVAL(SHWE,U1,FIXFLU,0.0)
** Zero direct-stresses on tube bundle
* South side
PATCH(TUBS,NORTH,16,21,8,8,1,NZ,1,LSTEP)
COVAL(TUBS,V1,FIXFLU,0.0)
* West side
PATCH(TUBW,EAST,15,15,9,18,1,NZ,1,LSTEP)
COVAL(TUBW,U1,FIXFLU,0.0)
* East side
PATCH(TUBE,EAST,21,21,9,18,1,NZ,1,LSTEP)
COVAL(TUBE,U1,FIXFLU,0.0)
** Fix displacement at tubesheet west side
PATCH(FIXW,EAST,11,11,19,21,1,NZ,1,LSTEP)
COVAL(FIXW,U1,FIXVAL,0.0)
** Fix displacement at the tubesheet east side
PATCH(FIXE,EAST,25,25,19,21,1,NZ,1,LSTEP)
COVAL(FIXE,U1,FIXVAL,0.0)
PIL fragment providing settings for stress and strain
post-processing
+ STORE(EPSY,STRY)
+ OUTPUT(EPSY,Y,N,N,N,N,N) ; OUTPUT(STRY,Y,N,N,N,N,N)
+ FIINIT(EPSY)=0.0;FIINIT(STRY)=0.0
+ STORE(EPSX,STRX)
+ OUTPUT(EPSX,Y,N,N,N,N,N) ; OUTPUT(STRX,Y,N,N,N,N,N)
+ FIINIT(EPSX)=0.0;FIINIT(STRX)=0.0
+ STORE(EPST) ; OUTPUT(EPST,Y,N,N,N,N,N);FIINIT(EPST)=0.0
SPEDAT(SET,STRAIN,CALSTR,L,:CALSTR:)
SPEDAT(SET,STRAIN,POISSN,R,:POISSN:)
SPEDAT(SET,STRAIN,EXCOLI,R,:EXCOLI:)
SPEDAT(SET,STRAIN,EXCOC1,R,:EXCOC1:)
SPEDAT(SET,STRAIN,EXCOC2,R,:EXCOC2:)
SPEDAT(SET,STRAIN,STIFFN,R,:STIFFN:)
SPEDAT(SET,STRAIN,STIFC1,R,:STIFC1:)
SPEDAT(SET,STRAIN,STIFC2,R,:STIFC2:)
PLANTBEGIN
** Set the fluid densities:
Header : water
Tube side : water
Shell side: air
DEN1=1000.
REGION() 1
DEN1=1000.
REGION() 2
DEN1=1.2
REGION() 3
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
The above three statements, followed by the pointer
RHO1=GRND and parameterized REGION commands, instruct
PLANT to make the density distributions as the
distribition of in-cell marker values dictates.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Set fluid viscosities
Header : effective viscosity proprtional to
local velocity magnitude and distance to
nearest wall.
Tube side : Constant=0.01
Shell side: as for header
VISL=1.*SQRT(U1**2+V1**2)*WDIS
REGION() 1
VISL=0.01
REGION() 2
VISL=1.*SQRT(U1**2+V1**2)*WDIS
REGION() 3
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
The above three statements do the same for viscosities
as previous three has done for densities. Note that
viscosities in the domains marked 1 and 3 are made
proprtional to the products of local velocity
magnitudes and distances to the nearest wall.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Non-linear resistance to tube-fluid flow exerted
by tubes, throughout the U-tube array.
PATCH(SS002U,PHASEM,1,10,1,NY,1,NZ,1,1)
CO=.2*(U1**2+V1**2)**0.15
COVAL(SS002U,U1,GRND,0.0)
CO=.2*(U1**2+V1**2)**0.15
COVAL(SS002U,V1,GRND,0.0)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
Momentum sinks are introduced by above formulae over all
cells having marker value appearing in the number of
PATCH name, 002.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Non-linear resistance to shell-fluid flow exerted
by tubes, throughout the shell-side.
PATCH(SS003H,PHASEM,1,10,1,NY,1,NZ,1,1)
CO=2.2*(U1**2+V1**2)**0.25
COVAL(SS003H,U1,GRND,0.0)
CO=2.2*(U1**2+V1**2)**0.25
COVAL(SS003H,V1,GRND,0.0)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
Momentum sinks are introduced by above formulae over all
cells having marker value appearing in the number of
PATCH name, 003.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Tube fluid heat transfer coefficient
STORE(ALF2);FIINIT(ALF2)=0.0
ALF2=1.+1.*SQRT(U1**2+V1**2+TINY)
REGION() 2
** Shell fluid heat transfer coefficient
STORE(ALF3);FIINIT(ALF3)=0.0
ALF3=1.+3.*SQRT(U1**2+V1**2+TINY)
REGION() 3
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
Tube and shell fluid heat transfer coefficients, ALF2
and ALF3, are made dependent on local velocity
magnitudes over the REGIONs marked 2 and 3
correspondingly.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Overall heat transfer coefficient
STORE(HTC);FIINIT(HTC)=0.0
HTC=1./(1/ALF2+1/ALF3[,-IG(1),])
REGION() 2
HTC=1./(1/ALF3 +1/ALF2[,+IG(1),])
REGION() 3
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
Overall heat transfer coefficient, HTC, distribution are
calculated by reference to appropriate local heat
transfer coefficients in REGIONs 2 and 3.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Heat-exchange with shell-fluid, throughout the shell.
PATCH(SS002T,PHASEM,1,NX,1,NY,1,NZ,1,1)
CO =HTC
VAL=TEMP[,-IG(1),]
COVAL(SS002T,TEMP,GRND,GRND)
** Heat-exchange with tube-fluid, throughout the shell.
PATCH(SS003S,PHASEM,1,NX,1,NY,1,NZ,1,1)
CO =HTC
VAL=TEMP[,+IG(1),]
COVAL(SS003S,TEMP,GRND,GRND)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
The PATCH names indicate the sub-domain cell markers , 2
and 3, over which the heat-exchange sources are applied.
The indicial operations for TEMP are arranged in
appropriate manner.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
===========================================================
Data preparation for conjugate and stress analysis
===========================================================
** Transfer shell fluid temperatures
PATCH(SS005T,CELL,1,NX,1,NY,1,NZ,1,1)
CO=1.e10
VAL=TEMP[-13,-6,]
COVAL(SS005T,TEM1,GRND,GRND)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
The temperatures of the shell fluid, TEMP, are
transfered into the stress analysis sub-domain, MARK=5,
to be used as TEM1.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Tube-wall temperature
PATCH(SS100T,CELL,1,NX,1,NY,1,NZ,1,1)
CO=1.e10
VAL=(ALF2[-13,+6,]*TEMP[-13,+6,]+$
ALF3[-13,-6,]*TEMP[-13,-6,])$
/(ALF2[-13,+6,]+ALF3[-13,-6,]+TINY)
COVAL(SS100T,TEM1,GRND,GRND)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
Here the tube wall temperatures, TEM1, are calculated in
the sub-domain indicated by MARK=100 as PATCH name
number specifies. TEM1s are computed via shell and tube
fluid temperatures and heat transfer coefficients
transfered from cooresponding sub-domains as indicial
numbers show.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Transfer the header temperatures
PATCH(SS004T,CELL,1,NX,1,NY,1,NZ,1,1)
CO=1.e10
VAL=TEMP[-13,+3,]
COVAL(SS004T,TEM1,GRND,GRND)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
The temperatures of the header tube fluid, TEMP, are
transfered into the stress analysis sub-domain, MARK=4,
to be used as TEM1.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
===========================================================
Output data processing
===========================================================
** Tube fluid velocities transfer
STORE(UU1,VV1)
UU1=U1[-13,+3,]
REGION(14,23,22,29,1,NZ)
VV1=V1[-13,+3,]
REGION(14,23,22,29,1,NZ)
UU1=U1[-13,+6,]
REGION(14,23,7,18,1,NZ)
VV1=V1[-13,+6,]
REGION(14,23,7,18,1,NZ)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
Tube fluid velocities are transfered from where they
have been calculated for easy visualisation.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Shell fluid velocities transfer
U2=U1[-13,-6,]
REGION(14,23,7,18,1,NZ)
V2=V1[-13,-6,]
REGION(14,23,7,18,1,NZ)
>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>
Shell fluid velocities are transfered from where they
have been calculated for easy visualisation.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
PLANTEND
dvo1dt=excoli
dmpstk=t
DISTIL=T
EX(P1)=7.325E+02; EX(U1)=9.487E-02; EX(U2)=5.730E-02
EX(V1)=1.371E-01; EX(V2)=2.435E-02; EX(TEMP)=1.982E-01
EX(VV1)=1.086E-01; EX(UU1)=3.593E-02; EX(HTC)=2.839E-01
EX(ALF3)=3.517E-01; EX(ALF2)=2.440E-01; EX(EPST)=1.679E-06
EX(STRX)=1.088E+05; EX(EPSX)=2.146E-06; EX(STRY)=2.937E+05
EX(EPSY)=3.295E-06; EX(LTLS)=1.575E-02; EX(WDIS)=5.966E-02
EX(TEM1)=2.956E-01; EX(MARK)=8.774E+00; EX(VISL)=1.851E-02
EX(DEN1)=2.406E+02; EX(PRPS)=3.482E+01; EX(NPOR)=9.014E-01
EX(EPOR)=8.425E-01
LIBREF=604
STOP