TALK=T;RUN(1,1)
  DISPLAY
  The case considered is 3D, steady, incompressible, turbulent flow
  past a surface-mounted cube in a channel. The flow separates in
  front of the cube to form a primary and secondary vortex, and
  the main vortex wraps as a horse-shoe vortex around the cube into
  the wake. The flow separates at the front corners of the cube on
  the roof and the side walls; the reattaches on the side walls but
  not on the roof. A large separation region develops behind the
  cube which interacts with the horseshoe vortex. In the experiments
  vortex shedding as observed from the side walls, and due to
  momentum exchange with the wake, this will lead to a shorter
  separation length than is reported here for a steady simulation.

  The height of the cube is 50% of that of the channel. The flow
  Reynolds number based on channel bulk velocity and cube height
  H is 40,000. The inlet plane is located 7H upstream of the cube,
  and the outlet plane 10H downstream of the cube. Because of
  symmetry conditions, only half of the width of the flow is
  calculated. A fixed-pressure boundary condition is applied at the
  outlet, and uniform flow profiles are specified at the inlet.

  The case is set up to run any one of 6 variants of the k-e model
  with scalable wall functions, namely the standard model and the
  MMK, Kato-Launder, RNG, Chen-Kim and realisable variants. An
  option is provided to also run the standard k-w model. The
  case has been studied experimentally by Martinuzzi & Tropea
  [J.Fluids Engng, 115, p85-92,1993] and numerically by Lakehal &
  Rodi [J.Wind Eng. Ind.Aerodyn, 67 & 68, p65-78, 1997].

  For this case, the main parameters that characterise separation
  are the frontal stagnation point Ys/H, the primary upstream
  separation point Zf/H, the roof reattachment point Zr/H and the
  length of the separation zone behind the cube Zb/H. The
  experimental and computed results for Zb are given below:

               K-E   KL   MMK   RKE  CHEN  RNG    KO    EXPT
       Zb/H = 2.08  2.72  2.81  2.46  3.1  2.92  1.70   1.61

  These results are not grid independent, and the mesh is not fine
  enough to resolve the expected separation on the roof nor to
  capture adequately the upstream and downstream separation regions.
  For this rather coarse mesh, all the k-e models overpredict Zb,
  and the standard k-w model gives close agreement with the data.
  The standard k-e model is known to produce too small a separation
  on the roof with unrealistic roof reattachment. The modified k-e
  models produce longer separation regions and no reattachment,
  which is in agreement with the data. However, the present
  computations employ insufficient mesh resolution to exemplify
  these benefits. However, it is likely that more mesh and the
  inclusion of unsteady effects are required for a much improved
  prediction of the separation length behind the cube.
  ENDDIS
  AUTOPLOT USE
  file
  phida 3

  d 1 w1 y 1 x 1
  plot
  redr
  shift x -8
  1
  scale
  level y 0
  scale x 0 5
  ENDUSE
 ************************************************************
  Group 1. Run Title and Number
 ************************************************************
 ************************************************************
 
 TEXT(RK K-E SURFACE-MOUNTED CUBE FLOW  :T308 )
 
 ************************************************************
 ************************************************************
 
 IRUNN = 1 ;LIBREF = 14
 ************************************************************
  Group 2. Time dependence
 STEADY = T
 ************************************************************
  Group 3. X-Direction Grid Spacing
 CARTES = T
 NX = 38
 XULAST =4.5
 XFRAC(1)=9.259259E-03 ;XFRAC(2)=0.018519
 XFRAC(3)=0.027778 ;XFRAC(4)=0.037037
 XFRAC(5)=0.046296 ;XFRAC(6)=0.055556
 XFRAC(7)=0.064815 ;XFRAC(8)=0.074074
 XFRAC(9)=0.083333 ;XFRAC(10)=0.092593
 XFRAC(11)=0.101852 ;XFRAC(12)=0.111111
 XFRAC(13)=0.122229 ;XFRAC(14)=0.134235
 XFRAC(15)=0.147203 ;XFRAC(16)=0.161208
 XFRAC(17)=0.176333 ;XFRAC(18)=0.192668
 XFRAC(19)=0.21031 ;XFRAC(20)=0.229363
 XFRAC(21)=0.249941 ;XFRAC(22)=0.272165
 XFRAC(23)=0.296166 ;XFRAC(24)=0.322088
 XFRAC(25)=0.350084 ;XFRAC(26)=0.380319
 XFRAC(27)=0.412973 ;XFRAC(28)=0.44824
 XFRAC(29)=0.486327 ;XFRAC(30)=0.527462
 XFRAC(31)=0.571888 ;XFRAC(32)=0.619867
 XFRAC(33)=0.671685 ;XFRAC(34)=0.727649
 XFRAC(35)=0.788089 ;XFRAC(36)=0.853365
 XFRAC(37)=0.923862 ;XFRAC(38)=1.
 ************************************************************
  Group 4. Y-Direction Grid Spacing
 NY = 36
 YVLAST =2.
 YFRAC(1)=0.043564 ;YFRAC(3)=0.123435
 YFRAC(5)=0.19452 ;YFRAC(7)=0.257785
 YFRAC(9)=0.31409 ;YFRAC(11)=0.364202
 YFRAC(13)=0.408802 ;YFRAC(15)=0.448495
 YFRAC(17)=0.483822 ;YFRAC(19)=0.516178
 YFRAC(21)=0.551505 ;YFRAC(23)=0.591198
 YFRAC(25)=0.635798 ;YFRAC(27)=0.68591
 YFRAC(29)=0.742215 ;YFRAC(31)=0.80548
 YFRAC(33)=0.876565 ;YFRAC(35)=0.956436
 ************************************************************
  Group 5. Z-Direction Grid Spacing
 PARAB = F
 NZ = 84
 ZWLAST =18.
 ZFRAC(1)=0.021957 ;ZFRAC(3)=0.062784
 ZFRAC(5)=0.099816 ;ZFRAC(7)=0.133405
 ZFRAC(9)=0.163871 ;ZFRAC(11)=0.191504
 ZFRAC(13)=0.216569 ;ZFRAC(15)=0.239303
 ZFRAC(17)=0.259923 ;ZFRAC(19)=0.278627
 ZFRAC(21)=0.295591 ;ZFRAC(23)=0.310979
 ZFRAC(25)=0.324936 ;ZFRAC(27)=0.337595
 ZFRAC(29)=0.349077 ;ZFRAC(31)=0.359492
 ZFRAC(33)=0.368938 ;ZFRAC(35)=0.377507
 ZFRAC(37)=0.385278 ;ZFRAC(39)=0.393519
 ZFRAC(41)=0.402778 ;ZFRAC(43)=0.412037
 ZFRAC(45)=0.421296 ;ZFRAC(47)=0.430556
 ZFRAC(49)=0.439815 ;ZFRAC(51)=0.448776
 ZFRAC(53)=0.45837 ;ZFRAC(55)=0.469354
 ZFRAC(57)=0.481929 ;ZFRAC(59)=0.496327
 ZFRAC(61)=0.512811 ;ZFRAC(63)=0.531684
 ZFRAC(65)=0.553291 ;ZFRAC(67)=0.578029
 ZFRAC(69)=0.606352 ;ZFRAC(71)=0.638779
 ZFRAC(73)=0.675904 ;ZFRAC(75)=0.718409
 ZFRAC(77)=0.767073 ;ZFRAC(79)=0.822788
 ZFRAC(81)=0.886576 ;ZFRAC(83)=0.959607
 ************************************************************
  Group 6. Body-Fitted Coordinates
 ************************************************************
  Group 7. Variables: STOREd,SOLVEd,NAMEd
 ONEPHS = T
 NAME(1)=P1 ;NAME(3)=U1
 NAME(5)=V1 ;NAME(7)=W1
 NAME(12)=KE ;NAME(13)=EP
 NAME(135)=PRPS ;NAME(137)=YPLS
 NAME(138)=C1E ;NAME(139)=DWDZ
 NAME(140)=DWDY ;NAME(141)=DWDX
 NAME(142)=DVDZ ;NAME(143)=DVDY
 NAME(144)=DVDX ;NAME(145)=DUDZ
 NAME(146)=DUDY ;NAME(147)=DUDX
 NAME(148)=EPKE ;NAME(149)=CMU
 NAME(150)=ENUT
    * Y in SOLUTN argument list denotes:
    * 1-stored 2-solved 3-whole-field
    * 4-point-by-point 5-explicit 6-harmonic averaging 
 SOLUTN(P1,Y,Y,Y,N,N,N)
 SOLUTN(U1,Y,Y,N,N,N,N)
 SOLUTN(V1,Y,Y,N,N,N,N)
 SOLUTN(W1,Y,Y,N,N,N,N)
 SOLUTN(KE,Y,Y,N,N,N,N)
 SOLUTN(EP,Y,Y,N,N,N,N)
 SOLUTN(PRPS,Y,N,N,N,N,Y)
 SOLUTN(YPLS,Y,N,N,N,N,Y)
 SOLUTN(C1E,Y,N,N,N,N,Y)
 SOLUTN(DWDZ,Y,N,N,N,N,N)
 SOLUTN(DWDY,Y,N,N,N,N,N)
 SOLUTN(DWDX,Y,N,N,N,N,N)
 SOLUTN(DVDZ,Y,N,N,N,N,N)
 SOLUTN(DVDY,Y,N,N,N,N,N)
 SOLUTN(DVDX,Y,N,N,N,N,N)
 SOLUTN(DUDZ,Y,N,N,N,N,N)
 SOLUTN(DUDY,Y,N,N,N,N,N)
 SOLUTN(DUDX,Y,N,N,N,N,N)
 SOLUTN(EPKE,Y,N,N,N,N,N)
 SOLUTN(CMU,Y,N,N,N,N,N)
 SOLUTN(ENUT,Y,N,N,N,N,Y)
 VIST = 150
 PRPS = 135
 ************************************************************
  Group 8. Terms & Devices
    * Y in TERMS argument list denotes:
    * 1-built-in source 2-convection 3-diffusion 4-transient
    * 5-first phase variable 6-interphase transport         
 TERMS(P1,Y,Y,Y,N,Y,Y)
 TERMS(U1,Y,Y,Y,Y,Y,Y)
 TERMS(V1,Y,Y,Y,Y,Y,Y)
 TERMS(W1,Y,Y,Y,Y,Y,Y)
 TERMS(KE,N,Y,Y,Y,Y,N)
 TERMS(EP,N,Y,Y,Y,Y,N)
 DIFCUT =0.5 ;ZDIFAC =1.
 GALA = F ;ADDDIF = F
 NEWENT = T
 ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1
 ************************************************************
  Group 9. Properties used if PRPS is not
  stored, and where PRPS = -1.0 if it is!
 RHO1 =1. ;TMP1 =0.
 EL1 = GRND4
 TSURR =0. ;TEMP0 =0.
 PRESS0 =0.
 DVO1DT =0. ;DRH1DP =0.
 EMISS =0. ;SCATT =0.
 RADIA =0. ;RADIB =0.
 EL1A =0. ;EL1B =0.
 EL1C =0.
 ENUL =2.5E-05 ;ENUT = GRND5
 ENUTA =0. ;ENUTB =0.
 ENUTC =0.
 IENUTA = 14
 PRNDTL(U1)=1. ;PRNDTL(V1)=1.
 PRNDTL(W1)=1. ;PRNDTL(KE)=1.
 PRNDTL(EP)=1.
 PRT(U1)=1. ;PRT(V1)=1.
 PRT(W1)=1. ;PRT(KE)=1.
 PRT(EP)=1.2
 CP1 =1. ;CP2 =1.
 ************************************************************
  Group 10.Inter-Phase Transfer Processes
 ************************************************************
  Group 11.Initial field variables (PHIs)
 FIINIT(P1)=1.3E-04 ;FIINIT(U1)=1.0E-10
 FIINIT(V1)=1.0E-03 ;FIINIT(W1)=1.
 FIINIT(KE)=4.5E-03 ;FIINIT(EP)=2.755394E-04
 FIINIT(PRPS)=-1. ;FIINIT(YPLS)=1.0E-10
 FIINIT(C1E)=1.0E-10 ;FIINIT(DWDZ)=1.0E-10
 FIINIT(DWDY)=1.0E-10 ;FIINIT(DWDX)=1.0E-10
 FIINIT(DVDZ)=1.0E-10 ;FIINIT(DVDY)=1.0E-10
 FIINIT(DVDX)=1.0E-10 ;FIINIT(DUDZ)=1.0E-10
 FIINIT(DUDY)=1.0E-10 ;FIINIT(DUDX)=1.0E-10
 FIINIT(EPKE)=1.0E-10 ;FIINIT(CMU)=0.09
 FIINIT(ENUT)=1.0E-10
 
 PATCH(CUBE ,INIVAL, 1, 12, 1, 18, 39, 50, 1, 1)
 INIT(CUBE ,PRPS,0. ,198. )
 INIADD = F
 FSWEEP = 1
 NAMFI =CHAM
 ************************************************************
  Group 12. Patchwise adjustment of terms
  Patches for this group are printed with those
  for Group 13.
  Their names begin either with GP12 or &
 ************************************************************
  Group 13. Boundary & Special Sources
 
 PATCH(KESOURCE,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1)
 COVAL(KESOURCE,KE , GRND4 , GRND4 )
 
 PATCH(REKESO ,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1)
 COVAL(REKESO ,EP , GRND4 , GRND4 )
 
 PATCH(INLET ,LOW , 1, 38, 1, 36, 1, 1, 1, 1)
 COVAL(INLET ,P1 , FIXFLU ,1. )
 COVAL(INLET ,U1 ,0. ,0. )
 COVAL(INLET ,V1 ,0. ,0. )
 COVAL(INLET ,W1 ,0. ,1. )
 COVAL(INLET ,KE ,0. ,4.5E-03 )
 COVAL(INLET ,EP ,0. ,2.755394E-04 )
 
 PATCH(OUTL ,HIGH , 1, 38, 1, 36, 84, 84, 1, 1)
 COVAL(OUTL ,P1 ,1000. ,0. )
 COVAL(OUTL ,V1 ,0. ,0. )
 COVAL(OUTL ,W1 ,0. ,0. )
 COVAL(OUTL ,KE ,0. ,0. )
 COVAL(OUTL ,EP ,0. ,0. )
 
 PATCH(WALLN ,NWALL , 1, 38, 36, 36, 1, 84, 1, 1)
 COVAL(WALLN ,U1 , GRND2 ,0. )
 COVAL(WALLN ,W1 , GRND2 ,0. )
 COVAL(WALLN ,KE , GRND2 , GRND2 )
 COVAL(WALLN ,EP , GRND2 , GRND2 )
 
 PATCH(WALLS ,SWALL , 1, 38, 1, 1, 1, 84, 1, 1)
 COVAL(WALLS ,U1 , GRND2 ,0. )
 COVAL(WALLS ,W1 , GRND2 ,0. )
 COVAL(WALLS ,KE , GRND2 , GRND2 )
 COVAL(WALLS ,EP , GRND2 , GRND2 )
 XCYCLE = F
 EGWF = T
 WALLCO = GRND2
 SCALWF = T
 ************************************************************
  Group 14. Downstream Pressure For PARAB
 ************************************************************
  Group 15. Terminate Sweeps
 LSWEEP = 1000 ;ISWC1 = 1
 LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1
 SELREF = T
 RESFAC =1.0E-04
 ************************************************************
  Group 16. Terminate Iterations
 LITER(P1)=50 ;LITER(U1)=10
 LITER(V1)=10 ;LITER(W1)=10
 LITER(KE)=5 ;LITER(EP)=5
 ENDIT(P1)=1.0E-03 ;ENDIT(U1)=1.0E-03
 ENDIT(V1)=1.0E-03 ;ENDIT(W1)=1.0E-03
 ENDIT(KE)=1.0E-03 ;ENDIT(EP)=1.0E-03
 ************************************************************
  Group 17. Relaxation
 RELAX(P1,LINRLX,1.)
 RELAX(U1,FALSDT,0.107143)
 RELAX(V1,FALSDT,0.107143)
 RELAX(W1,FALSDT,0.107143)
 RELAX(KE,FALSDT,0.107143)
 RELAX(EP,FALSDT,0.107143)
 RELAX(PRPS,LINRLX,1.)
 RELAX(YPLS,LINRLX,1.)
 RELAX(C1E,LINRLX,1.)
 RELAX(DWDZ,LINRLX,1.)
 RELAX(DWDY,LINRLX,1.)
 RELAX(DWDX,LINRLX,1.)
 RELAX(DVDZ,LINRLX,1.)
 RELAX(DVDY,LINRLX,1.)
 RELAX(DVDX,LINRLX,1.)
 RELAX(DUDZ,LINRLX,1.)
 RELAX(DUDY,LINRLX,1.)
 RELAX(DUDX,LINRLX,1.)
 RELAX(EPKE,LINRLX,1.)
 RELAX(CMU,LINRLX,1.)
 RELAX(ENUT,LINRLX,1.)
 KELIN = 3
 OVRRLX =0.
 EXPERT = F ;NNORSL = F
 ************************************************************
  Group 18. Limits
 VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10
 VARMAX(U1)=1.0E+06 ;VARMIN(U1)=-1.0E+06
 VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06
 VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06
 VARMAX(KE)=1.0E+10 ;VARMIN(KE)=1.0E-10
 VARMAX(EP)=1.0E+10 ;VARMIN(EP)=1.0E-10
 VARMAX(PRPS)=1.0E+10 ;VARMIN(PRPS)=-1.0E+10
 VARMAX(YPLS)=1.0E+10 ;VARMIN(YPLS)=-1.0E+10
 VARMAX(C1E)=1.0E+10 ;VARMIN(C1E)=-1.0E+10
 VARMAX(DWDZ)=1.0E+10 ;VARMIN(DWDZ)=-1.0E+10
 VARMAX(DWDY)=1.0E+10 ;VARMIN(DWDY)=-1.0E+10
 VARMAX(DWDX)=1.0E+10 ;VARMIN(DWDX)=-1.0E+10
 VARMAX(DVDZ)=1.0E+10 ;VARMIN(DVDZ)=-1.0E+10
 VARMAX(DVDY)=1.0E+10 ;VARMIN(DVDY)=-1.0E+10
 VARMAX(DVDX)=1.0E+10 ;VARMIN(DVDX)=-1.0E+10
 VARMAX(DUDZ)=1.0E+10 ;VARMIN(DUDZ)=-1.0E+10
 VARMAX(DUDY)=1.0E+10 ;VARMIN(DUDY)=-1.0E+10
 VARMAX(DUDX)=1.0E+10 ;VARMIN(DUDX)=-1.0E+10
 VARMAX(EPKE)=1.0E+10 ;VARMIN(EPKE)=-1.0E+10
 VARMAX(CMU)=1.0E+10 ;VARMIN(CMU)=-1.0E+10
 VARMAX(ENUT)=1.0E+10 ;VARMIN(ENUT)=-1.0E+10
 ************************************************************
  Group 19. Data transmitted to GROUND
 GENK = T
 PARSOL = F
 IENUTA = 14
 ISG62 = 1
 SPEDAT(SET,KECONST,C2E,R,1.9)
 SPEDAT(SET,MATERIAL,198,L,T)
 ************************************************************
  Group 20. Preliminary Printout
 DISTIL = T ;NULLPR = F
 NDST = 0
 DSTTOL =1.0E-02
 EX(P1)=0.06155 ;EX(U1)=0.02941
 EX(V1)=0.02435 ;EX(W1)=0.9567
 EX(KE)=6.595E-03 ;EX(EP)=2.144E-03
 EX(PRPS)=0.9774 ;EX(YPLS)=4.925
 EX(C1E)=0.4491 ;EX(DWDZ)=0.07234
 EX(DWDY)=0.3142 ;EX(DWDX)=0.1289
 EX(DVDZ)=0.04032 ;EX(DVDY)=0.05053
 EX(DVDX)=0.03186 ;EX(DUDZ)=0.03929
 EX(DUDY)=0.03484 ;EX(DUDX)=0.05655
 EX(EPKE)=0.1823 ;EX(CMU)=0.1496
 EX(ENUT)=7.406E-03
 ************************************************************
  Group 21. Print-out of Variables
 INIFLD = F ;SUBWGR = F
    * Y in OUTPUT argument list denotes:
    * 1-field 2-correction-eq. monitor 3-selective dumping      
    * 4-whole-field residual 5-spot-value table 6-residual table
 OUTPUT(P1,Y,N,Y,Y,Y,Y)
 OUTPUT(U1,Y,N,Y,Y,Y,Y)
 OUTPUT(V1,Y,N,Y,Y,Y,Y)
 OUTPUT(W1,Y,N,Y,Y,Y,Y)
 OUTPUT(KE,Y,N,Y,Y,Y,Y)
 OUTPUT(EP,Y,N,Y,Y,Y,Y)
 OUTPUT(PRPS,Y,N,Y,N,N,N)
 OUTPUT(YPLS,Y,N,Y,N,N,N)
 OUTPUT(C1E,Y,N,Y,N,N,N)
 OUTPUT(DWDZ,Y,N,N,N,N,N)
 OUTPUT(DWDY,Y,N,N,N,N,N)
 OUTPUT(DWDX,Y,N,N,N,N,N)
 OUTPUT(DVDZ,Y,N,N,N,N,N)
 OUTPUT(DVDY,Y,N,N,N,N,N)
 OUTPUT(DVDX,Y,N,N,N,N,N)
 OUTPUT(DUDZ,Y,N,N,N,N,N)
 OUTPUT(DUDY,Y,N,N,N,N,N)
 OUTPUT(DUDX,Y,N,N,N,N,N)
 OUTPUT(EPKE,Y,N,N,N,N,N)
 OUTPUT(CMU,Y,N,N,N,N,N)
 OUTPUT(ENUT,Y,N,Y,N,N,N)
 ************************************************************
  Group 22. Monitor Print-Out
 IXMON = 1 ;IYMON = 32 ;IZMON = 80
 NPRMON = 100 ;NPRMNT = 1 ;TSTSWP = -1
 UWATCH = T ;USTEER = T
 HIGHLO = F
 ************************************************************
  Group 23.Field Print-Out & Plot Control
 NPRINT = 100000 ;NUMCLS = 5
 NXPRIN = -1 ;IXPRF = 1 ;IXPRL = 10000
 NYPRIN = 2 ;IYPRF = 1 ;IYPRL = 10000
 NZPRIN = 2 ;IZPRF = 1 ;IZPRL = 10000
 XZPR = F ;YZPR = F
 IPLTF = 1 ;IPLTL = 1000 ;NPLT = 10
 ISWPRF = 1 ;ISWPRL = 100000
 ITABL = 3 ;IPROF = 1
 ABSIZ =0.5 ;ORSIZ =0.4
 NTZPRF = 1 ;NCOLPF = 50
 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20
   No PATCHes yet used for this Group
 ************************************************************
  Group 24. Dumps For Restarts
 SAVE = T ;NOWIPE = F
 NSAVE =CHAM
STOP