TALK=T;RUN(1,1)
DISPLAY
The case considered is 3D, steady, incompressible, turbulent flow
past a surface-mounted cube in a channel. The flow separates in
front of the cube to form a primary and secondary vortex, and
the main vortex wraps as a horse-shoe vortex around the cube into
the wake. The flow separates at the front corners of the cube on
the roof and the side walls; the reattaches on the side walls but
not on the roof. A large separation region develops behind the
cube which interacts with the horseshoe vortex. In the experiments
vortex shedding as observed from the side walls, and due to
momentum exchange with the wake, this will lead to a shorter
separation length than is reported here for a steady simulation.
The height of the cube is 50% of that of the channel. The flow
Reynolds number based on channel bulk velocity and cube height
H is 40,000. The inlet plane is located 7H upstream of the cube,
and the outlet plane 10H downstream of the cube. Because of
symmetry conditions, only half of the width of the flow is
calculated. A fixed-pressure boundary condition is applied at the
outlet, and uniform flow profiles are specified at the inlet.
The case is set up to run any one of 6 variants of the k-e model
with scalable wall functions, namely the standard model and the
MMK, Kato-Launder, RNG, Chen-Kim and realisable variants. An
option is provided to also run with the Wilcox 1988 & 2008 k-w
models, the Menter Baseline k-w model, and the k-w-SST model.The
case has been studied experimentally by Martinuzzi & Tropea
[J.Fluids Engng, 115, p85-92,1993] and numerically by Lakehal &
Rodi [J.Wind Eng. Ind.Aerodyn, 67 & 68, p65-78, 1997].
For this case, the main parameters that characterise separation
are the frontal stagnation point Ys/H, the primary upstream
separation point Zf/H, the roof reattachment point Zr/H and the
length of the separation zone behind the cube Zb/H. The
experimental and computed results for Zb are given below:
K-E KL MMK RKE CK RNG KW KWR KWM SST EXPT
Zb/H = 2.1 2.72 2.81 2.46 3.1 2.92 1.7 2.88 1.9 3.0 1.61
These results are not grid independent, and the mesh is not fine
enough to resolve the expected separation on the roof nor to
capture adequately the upstream and downstream separation regions.
For this rather coarse mesh, all the k-e models overpredict Zb,
and the Wilcox 1988 k-w model gives close agreement with the data.
The standard k-e model is known to produce too small a separation
on the roof with unrealistic roof reattachment. The modified k-e
models produce longer separation regions and no reattachment,
which is in agreement with the data. However, the present
computations employ insufficient mesh resolution to exemplify
these benefits. However, it is likely that more mesh and the
inclusion of unsteady effects are required for a much improved
prediction of the separation length behind the cube.
ENDDIS
AUTOPLOT USE
file
phida 3
d 1 w1 y 1 x 1
plot
redr
shift x -8
1
scale
level y 0
scale x 0 5
ENDUSE
************************************************************
Group 1. Run Title and Number
************************************************************
************************************************************
TEXT(RK K-E SURFACE CUBE FLOW :T308 )
************************************************************
************************************************************
IRUNN = 1 ;LIBREF = 308
************************************************************
Group 2. Time dependence
STEADY = T
************************************************************
Group 3. X-Direction Grid Spacing
CARTES = T
NX = 38
XULAST =4.5
XFRAC(1)=9.259259E-03 ;XFRAC(2)=0.018519
XFRAC(3)=0.027778 ;XFRAC(4)=0.037037
XFRAC(5)=0.046296 ;XFRAC(6)=0.055556
XFRAC(7)=0.064815 ;XFRAC(8)=0.074074
XFRAC(9)=0.083333 ;XFRAC(10)=0.092593
XFRAC(11)=0.101852 ;XFRAC(12)=0.111111
XFRAC(13)=0.122229 ;XFRAC(14)=0.134235
XFRAC(15)=0.147203 ;XFRAC(16)=0.161208
XFRAC(17)=0.176333 ;XFRAC(18)=0.192668
XFRAC(19)=0.21031 ;XFRAC(20)=0.229363
XFRAC(21)=0.249941 ;XFRAC(22)=0.272165
XFRAC(23)=0.296166 ;XFRAC(24)=0.322088
XFRAC(25)=0.350084 ;XFRAC(26)=0.380319
XFRAC(27)=0.412973 ;XFRAC(28)=0.44824
XFRAC(29)=0.486327 ;XFRAC(30)=0.527462
XFRAC(31)=0.571888 ;XFRAC(32)=0.619867
XFRAC(33)=0.671685 ;XFRAC(34)=0.727649
XFRAC(35)=0.788089 ;XFRAC(36)=0.853365
XFRAC(37)=0.923862 ;XFRAC(38)=1.
************************************************************
Group 4. Y-Direction Grid Spacing
NY = 36
YVLAST =2.
YFRAC(1)=0.043564 ;YFRAC(3)=0.123435
YFRAC(5)=0.19452 ;YFRAC(7)=0.257785
YFRAC(9)=0.31409 ;YFRAC(11)=0.364202
YFRAC(13)=0.408802 ;YFRAC(15)=0.448495
YFRAC(17)=0.483822 ;YFRAC(19)=0.516178
YFRAC(21)=0.551505 ;YFRAC(23)=0.591198
YFRAC(25)=0.635798 ;YFRAC(27)=0.68591
YFRAC(29)=0.742215 ;YFRAC(31)=0.80548
YFRAC(33)=0.876565 ;YFRAC(35)=0.956436
************************************************************
Group 5. Z-Direction Grid Spacing
PARAB = F
NZ = 84
ZWLAST =18.
ZFRAC(1)=0.021957 ;ZFRAC(3)=0.062784
ZFRAC(5)=0.099816 ;ZFRAC(7)=0.133405
ZFRAC(9)=0.163871 ;ZFRAC(11)=0.191504
ZFRAC(13)=0.216569 ;ZFRAC(15)=0.239303
ZFRAC(17)=0.259923 ;ZFRAC(19)=0.278627
ZFRAC(21)=0.295591 ;ZFRAC(23)=0.310979
ZFRAC(25)=0.324936 ;ZFRAC(27)=0.337595
ZFRAC(29)=0.349077 ;ZFRAC(31)=0.359492
ZFRAC(33)=0.368938 ;ZFRAC(35)=0.377507
ZFRAC(37)=0.385278 ;ZFRAC(39)=0.393519
ZFRAC(41)=0.402778 ;ZFRAC(43)=0.412037
ZFRAC(45)=0.421296 ;ZFRAC(47)=0.430556
ZFRAC(49)=0.439815 ;ZFRAC(51)=0.448776
ZFRAC(53)=0.45837 ;ZFRAC(55)=0.469354
ZFRAC(57)=0.481929 ;ZFRAC(59)=0.496327
ZFRAC(61)=0.512811 ;ZFRAC(63)=0.531684
ZFRAC(65)=0.553291 ;ZFRAC(67)=0.578029
ZFRAC(69)=0.606352 ;ZFRAC(71)=0.638779
ZFRAC(73)=0.675904 ;ZFRAC(75)=0.718409
ZFRAC(77)=0.767073 ;ZFRAC(79)=0.822788
ZFRAC(81)=0.886576 ;ZFRAC(83)=0.959607
************************************************************
Group 6. Body-Fitted Coordinates
************************************************************
Group 7. Variables: STOREd,SOLVEd,NAMEd
ONEPHS = T
NAME(1)=P1 ;NAME(3)=U1
NAME(5)=V1 ;NAME(7)=W1
NAME(12)=KE ;NAME(13)=EP
NAME(135)=PRPS ;NAME(137)=YPLS
NAME(138)=C1E ;NAME(139)=DWDZ
NAME(140)=DWDY ;NAME(141)=DWDX
NAME(142)=DVDZ ;NAME(143)=DVDY
NAME(144)=DVDX ;NAME(145)=DUDZ
NAME(146)=DUDY ;NAME(147)=DUDX
NAME(148)=EPKE ;NAME(149)=CMU
NAME(150)=ENUT
* Y in SOLUTN argument list denotes:
* 1-stored 2-solved 3-whole-field
* 4-point-by-point 5-explicit 6-harmonic averaging
SOLUTN(P1,Y,Y,Y,N,N,N)
SOLUTN(U1,Y,Y,N,N,N,N)
SOLUTN(V1,Y,Y,N,N,N,N)
SOLUTN(W1,Y,Y,N,N,N,N)
SOLUTN(KE,Y,Y,N,N,N,N)
SOLUTN(EP,Y,Y,N,N,N,N)
SOLUTN(PRPS,Y,N,N,N,N,Y)
SOLUTN(YPLS,Y,N,N,N,N,Y)
SOLUTN(C1E,Y,N,N,N,N,Y)
SOLUTN(DWDZ,Y,N,N,N,N,N)
SOLUTN(DWDY,Y,N,N,N,N,N)
SOLUTN(DWDX,Y,N,N,N,N,N)
SOLUTN(DVDZ,Y,N,N,N,N,N)
SOLUTN(DVDY,Y,N,N,N,N,N)
SOLUTN(DVDX,Y,N,N,N,N,N)
SOLUTN(DUDZ,Y,N,N,N,N,N)
SOLUTN(DUDY,Y,N,N,N,N,N)
SOLUTN(DUDX,Y,N,N,N,N,N)
SOLUTN(EPKE,Y,N,N,N,N,N)
SOLUTN(CMU,Y,N,N,N,N,N)
SOLUTN(ENUT,Y,N,N,N,N,Y)
VIST = 150
PRPS = 135
************************************************************
Group 8. Terms & Devices
* Y in TERMS argument list denotes:
* 1-built-in source 2-convection 3-diffusion 4-transient
* 5-first phase variable 6-interphase transport
TERMS(P1,Y,Y,Y,N,Y,Y)
TERMS(U1,Y,Y,Y,Y,Y,Y)
TERMS(V1,Y,Y,Y,Y,Y,Y)
TERMS(W1,Y,Y,Y,Y,Y,Y)
TERMS(KE,N,Y,Y,Y,Y,N)
TERMS(EP,N,Y,Y,Y,Y,N)
DIFCUT =0.5 ;ZDIFAC =1.
GALA = F ;ADDDIF = F
NEWENT = T
ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1
************************************************************
Group 9. Properties used if PRPS is not
stored, and where PRPS = -1.0 if it is!
RHO1 =1. ;TMP1 =0. ;EL1 = GRND4
TSURR =0. ;TEMP0 =0. ;PRESS0 =0.
DVO1DT =0. ;DRH1DP =0.
EMISS =0. ;SCATT =0.
RADIA =0. ;RADIB =0.
EL1A =0. ;EL1B =0. ;EL1C =0.
ENUL =2.5E-05 ;ENUT = GRND5
ENUTA =0. ;ENUTB =0. ;ENUTC =0.
IENUTA = 14
PRNDTL(U1)=1. ;PRNDTL(V1)=1.
PRNDTL(W1)=1. ;PRNDTL(KE)=1.
PRNDTL(EP)=1.
PRT(U1)=1. ;PRT(V1)=1.
PRT(W1)=1. ;PRT(KE)=1.
PRT(EP)=1.2
CP1 =1. ;CP2 =1.
************************************************************
Group 10.Inter-Phase Transfer Processes
************************************************************
Group 11.Initial field variables (PHIs)
FIINIT(P1)=1.3E-04 ;FIINIT(U1)=1.0E-10
FIINIT(V1)=1.0E-03 ;FIINIT(W1)=1.
FIINIT(KE)=4.5E-03 ;FIINIT(EP)=2.755394E-04
FIINIT(PRPS)=-1. ;FIINIT(YPLS)=1.0E-10
FIINIT(C1E)=1.0E-10 ;FIINIT(DWDZ)=1.0E-10
FIINIT(DWDY)=1.0E-10 ;FIINIT(DWDX)=1.0E-10
FIINIT(DVDZ)=1.0E-10 ;FIINIT(DVDY)=1.0E-10
FIINIT(DVDX)=1.0E-10 ;FIINIT(DUDZ)=1.0E-10
FIINIT(DUDY)=1.0E-10 ;FIINIT(DUDX)=1.0E-10
FIINIT(EPKE)=1.0E-10 ;FIINIT(CMU)=0.09
FIINIT(ENUT)=1.0E-10
PATCH(CUBE ,INIVAL, 1, 12, 1, 18, 39, 50, 1, 1)
INIT(CUBE ,PRPS,0. ,198. )
INIADD = F
FSWEEP = 1
NAMFI =CHAM
************************************************************
Group 12. Patchwise adjustment of terms
Patches for this group are printed with those
for Group 13.
Their names begin either with GP12 or &
************************************************************
Group 13. Boundary & Special Sources
PATCH(KESOURCE,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1)
COVAL(KESOURCE,KE , GRND4 , GRND4 )
PATCH(REKESO ,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1)
COVAL(REKESO ,EP , GRND4 , GRND4 )
PATCH(INLET ,LOW , 1, 38, 1, 36, 1, 1, 1, 1)
COVAL(INLET ,P1 , FIXFLU ,1. )
COVAL(INLET ,U1 ,0. ,0. )
COVAL(INLET ,V1 ,0. ,0. )
COVAL(INLET ,W1 ,0. ,1. )
COVAL(INLET ,KE ,0. ,4.5E-03 )
COVAL(INLET ,EP ,0. ,2.755394E-04 )
PATCH(OUTL ,HIGH , 1, 38, 1, 36, 84, 84, 1, 1)
COVAL(OUTL ,P1 ,1000. ,0. )
COVAL(OUTL ,V1 ,0. ,0. )
COVAL(OUTL ,W1 ,0. ,0. )
COVAL(OUTL ,KE ,0. ,0. )
COVAL(OUTL ,EP ,0. ,0. )
PATCH(WALLN ,NWALL , 1, 38, 36, 36, 1, 84, 1, 1)
COVAL(WALLN ,U1 , GRND2 ,0. )
COVAL(WALLN ,W1 , GRND2 ,0. )
COVAL(WALLN ,KE , GRND2 , GRND2 )
COVAL(WALLN ,EP , GRND2 , GRND2 )
PATCH(WALLS ,SWALL , 1, 38, 1, 1, 1, 84, 1, 1)
COVAL(WALLS ,U1 , GRND2 ,0. )
COVAL(WALLS ,W1 , GRND2 ,0. )
COVAL(WALLS ,KE , GRND2 , GRND2 )
COVAL(WALLS ,EP , GRND2 , GRND2 )
XCYCLE = F
EGWF = T
WALLCO = GRND2
SCALWF = T
************************************************************
Group 14. Downstream Pressure For PARAB
************************************************************
Group 15. Terminate Sweeps
LSWEEP = 1200 ;ISWC1 = 1
LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1
SELREF = T
RESFAC =1.0E-05
************************************************************
Group 16. Terminate Iterations
LITER(P1)=50 ;LITER(U1)=10
LITER(V1)=10 ;LITER(W1)=10
LITER(KE)=5 ;LITER(EP)=5
ENDIT(P1)=1.0E-03 ;ENDIT(U1)=1.0E-03
ENDIT(V1)=1.0E-03 ;ENDIT(W1)=1.0E-03
ENDIT(KE)=1.0E-03 ;ENDIT(EP)=1.0E-03
************************************************************
Group 17. Relaxation
RELAX(P1,LINRLX,1.)
RELAX(U1,FALSDT,0.107143)
RELAX(V1,FALSDT,0.107143)
RELAX(W1,FALSDT,0.107143)
RELAX(KE,FALSDT,0.107143)
RELAX(EP,FALSDT,0.107143)
RELAX(PRPS,LINRLX,1.)
RELAX(YPLS,LINRLX,1.)
RELAX(C1E,LINRLX,1.)
RELAX(DWDZ,LINRLX,1.)
RELAX(DWDY,LINRLX,1.)
RELAX(DWDX,LINRLX,1.)
RELAX(DVDZ,LINRLX,1.)
RELAX(DVDY,LINRLX,1.)
RELAX(DVDX,LINRLX,1.)
RELAX(DUDZ,LINRLX,1.)
RELAX(DUDY,LINRLX,1.)
RELAX(DUDX,LINRLX,1.)
RELAX(EPKE,LINRLX,1.)
RELAX(CMU,LINRLX,0.5)
RELAX(ENUT,LINRLX,1.)
KELIN = 3
OVRRLX =0.
EXPERT = F ;NNORSL = F
************************************************************
Group 18. Limits
VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10
VARMAX(U1)=1.0E+06 ;VARMIN(U1)=-1.0E+06
VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06
VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06
VARMAX(KE)=1.0E+10 ;VARMIN(KE)=1.0E-10
VARMAX(EP)=1.0E+10 ;VARMIN(EP)=1.0E-10
VARMAX(PRPS)=1.0E+10 ;VARMIN(PRPS)=-1.0E+10
VARMAX(YPLS)=1.0E+10 ;VARMIN(YPLS)=-1.0E+10
VARMAX(C1E)=1.0E+10 ;VARMIN(C1E)=-1.0E+10
VARMAX(DWDZ)=1.0E+10 ;VARMIN(DWDZ)=-1.0E+10
VARMAX(DWDY)=1.0E+10 ;VARMIN(DWDY)=-1.0E+10
VARMAX(DWDX)=1.0E+10 ;VARMIN(DWDX)=-1.0E+10
VARMAX(DVDZ)=1.0E+10 ;VARMIN(DVDZ)=-1.0E+10
VARMAX(DVDY)=1.0E+10 ;VARMIN(DVDY)=-1.0E+10
VARMAX(DVDX)=1.0E+10 ;VARMIN(DVDX)=-1.0E+10
VARMAX(DUDZ)=1.0E+10 ;VARMIN(DUDZ)=-1.0E+10
VARMAX(DUDY)=1.0E+10 ;VARMIN(DUDY)=-1.0E+10
VARMAX(DUDX)=1.0E+10 ;VARMIN(DUDX)=-1.0E+10
VARMAX(EPKE)=1.0E+10 ;VARMIN(EPKE)=-1.0E+10
VARMAX(CMU)=1.0E+10 ;VARMIN(CMU)=-1.0E+10
VARMAX(ENUT)=1.0E+10 ;VARMIN(ENUT)=-1.0E+10
************************************************************
Group 19. Data transmitted to GROUND
GENK = T
PARSOL = F
IENUTA = 14
ISG62 = 1
SPEDAT(SET,KECONST,C2E,R,1.9)
SPEDAT(SET,OUTPUT,NOFIELD,L,T)
SPEDAT(SET,GXMONI,PLOTALL,L,T)
SPEDAT(SET,MATERIAL,198,L,T)
************************************************************
Group 20. Preliminary Printout
DISTIL = T ;NULLPR = F
NDST = 0
DSTTOL =1.0E-02
EX(P1)=0.06155 ;EX(U1)=0.02941
EX(V1)=0.02435 ;EX(W1)=0.9567
EX(KE)=6.595E-03 ;EX(EP)=2.144E-03
EX(PRPS)=0.9774 ;EX(YPLS)=4.925
EX(C1E)=0.4491 ;EX(DWDZ)=0.07234
EX(DWDY)=0.3142 ;EX(DWDX)=0.1289
EX(DVDZ)=0.04032 ;EX(DVDY)=0.05053
EX(DVDX)=0.03186 ;EX(DUDZ)=0.03929
EX(DUDY)=0.03484 ;EX(DUDX)=0.05655
EX(EPKE)=0.1823 ;EX(CMU)=0.1496
EX(ENUT)=7.406E-03
************************************************************
Group 21. Print-out of Variables
INIFLD = F ;SUBWGR = F
* Y in OUTPUT argument list denotes:
* 1-field 2-correction-eq. monitor 3-selective dumping
* 4-whole-field residual 5-spot-value table 6-residual table
OUTPUT(P1,Y,N,Y,Y,Y,Y)
OUTPUT(U1,Y,N,Y,Y,Y,Y)
OUTPUT(V1,Y,N,Y,Y,Y,Y)
OUTPUT(W1,Y,N,Y,Y,Y,Y)
OUTPUT(KE,Y,N,Y,Y,Y,Y)
OUTPUT(EP,Y,N,Y,Y,Y,Y)
OUTPUT(PRPS,Y,N,Y,N,N,N)
OUTPUT(YPLS,Y,N,Y,N,N,N)
OUTPUT(C1E,Y,N,Y,N,N,N)
OUTPUT(DWDZ,Y,N,Y,N,N,N)
OUTPUT(DWDY,Y,N,Y,N,N,N)
OUTPUT(DWDX,Y,N,Y,N,N,N)
OUTPUT(DVDZ,Y,N,Y,N,N,N)
OUTPUT(DVDY,Y,N,Y,N,N,N)
OUTPUT(DVDX,Y,N,Y,N,N,N)
OUTPUT(DUDZ,Y,N,Y,N,N,N)
OUTPUT(DUDY,Y,N,Y,N,N,N)
OUTPUT(DUDX,Y,N,Y,N,N,N)
OUTPUT(EPKE,Y,N,Y,N,N,N)
OUTPUT(CMU,Y,N,Y,N,N,N)
OUTPUT(ENUT,Y,N,Y,N,N,N)
************************************************************
Group 22. Monitor Print-Out
IXMON = 1 ;IYMON = 32 ;IZMON = 80
NPRMON = 100 ;NPRMNT = 1 ;TSTSWP = -1
UWATCH = T ;USTEER = T
HIGHLO = F
************************************************************
Group 23.Field Print-Out & Plot Control
NPRINT = 100000 ;NUMCLS = 5
NXPRIN = -1 ;IXPRF = 1 ;IXPRL = 10000
NYPRIN = 2 ;IYPRF = 1 ;IYPRL = 10000
NZPRIN = 2 ;IZPRF = 1 ;IZPRL = 10000
XZPR = F ;YZPR = F
IPLTF = 1 ;IPLTL = 1200 ;NPLT = 10
ISWPRF = 1 ;ISWPRL = 100000
ITABL = 3 ;IPROF = 1
ABSIZ =0.5 ;ORSIZ =0.4
NTZPRF = 1 ;NCOLPF = 50
ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20
No PATCHes yet used for this Group
************************************************************
Group 24. Dumps For Restarts
SAVE = T ;NOWIPE = F
NSAVE =CHAM
STOP