TALK=F;RUN(1,1) TEXT(LoRe K-W SST_2D IMPINGING ROUND JET : T218 TITLE DISPLAY The case considered is the normal impingement of a turbulent round jet of air on a heated flat plate. The jet issues into atmospheric ambient fluid at a Reynolds number of 70,000 from a pipe located 6 pipe diameters above the electrically heated plate. The jet injection temperature is ambient so that the purpose of the flow process is to effect cooling. For the case of orthogonal impaction, the flow is axisymmetric and is directed outward along the surface giving rise to a radial wall jet. The calculation may be performed with one of 5 low-Reynolds-number turbulence models: ; the Lam-Bremhorst k-e model with or without the Yap correction; the 2-layer k-e model; the Wilcox 2008 k-w model; and the k-w SST model. The models use a mesh of 70 radial by 110 axial cells. ENDDIS This case is the validation case investigated at CFD95, Canada (see Pollard et al (1996), CFDSC/V/95-3) and in the 2nd ERCOFTAC -IAHR Workshop on Refined-Flow Modelling. The flow geometry and conditions approximate to those reported experimentally by D.Cooper et al (1993) and Craft et al (1993) for Re=7E4 and H/D=6. Cooper, D., Jackson, D.C., Launder, B.E. & Liao, G.X.,"Impinging jet studies for turbulence model assessment-l. Flow-field experiments",Int.J.Heat & Mass Transfer, Vol.36. No.1O. p2675-2684, (1993) Craft,T.J., Graham,L.J.W & Launder, B.E., "Impinging jet studies for turbulence model assessment-II. An examination of the performance of four turbulence models", Int.J.Heat & Mass Transfer, Vol.36. No.1O. p2685-2697,(1993) This AUTOPLOT sequence provides a plot of the radial distribution of the Nusselt number along the plate. AUTOPLOT USE file phida 3 da 1 nuss z m divide x 1 1 col9 1 level y 0;level x 0 scale x 0 7 msg plate Nusselt number pause cl da 1 nus z m divide x 1 1 col9 1 level y 0;level x 0 scale x 0 7 msg plate scaled Nusselt number pause msg Press e to END ENDUSE CHAR(CTUR,TLSC);BOOLEAN(KWMOD,FIXQ) KWMOD=F;FIXQ=T INTEGER(NYJ,NYFS) REAL(REY,DIAM,HEIGHT,WJET,RADJ,TKEIN,EPSIN,DTF,AIN,FLOW) REAL(YPLS1,DELZ1,DELZ,AA,KFAC,US,SFAC,VREL,ENUFRE,KEFRE,EPFRE) REAL(CP,TJET,TAMB,QPLATE,QIN,COND,PRLAM,NUSLT,DELTEM,EPSINI) REAL(TWAL,RPLATE,APLATE,NUFAC) ** nozzle discharge conditions REY=7.E4 DIAM=1.0; RADJ=0.5*DIAM;HEIGHT=6.*DIAM WJET=REY*ENUL/DIAM;TKEIN=0.01*WJET*WJET EPSIN=.1643*TKEIN**1.5/(0.09*DIAM) ** temperature conditions TJET=300.0;TAMB=TJET;TWAL=310.0 ** physical properties CP=1005.0;PRLAM=0.71; RHO1=1.178;ENUL=1.567E-5 COND=CP*RHO1*ENUL/PRLAM NUSLT=0.045*(REY**0.7)*PRLAM**0.4 ** wall heat flux in W/m^2 DELTEM=10.0 ! estimate temperature rise QPLATE=NUSLT*COND*DELTEM/DIAM QPLATE ** free stream turbulence ENUFRE=ENUL;KEFRE=1.E-5;EPFRE=0.09*KEFRE**2/ENUFRE ** plate area - not needed APLATE=XULAST*RPLATE*RPLATE/8. GROUP 3. X-direction grid specification CARTES=F;NX=1;XULAST=0.1;AIN=0.5*RADJ*RADJ*XULAST GROUP 4. Y-direction grid specification RPLATE=7.*DIAM NYJ=20;NYFS=50 NREGY=2; REGEXT(Y,RPLATE);IREGY=1;GRDPWR(Y,NYJ,RADJ,1.0) IREGY=2;GRDPWR(Y,NYFS*2,RPLATE-RADJ,1.1) GROUP 5. Z-direction grid specification NZ=110 ** define uniform grid initially IREGZ=1;GRDPWR(Z,NZ,ZWLAST,-2.1) ZWLAST=HEIGHT GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1,TEM1);SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(TEM1,Y,Y,Y,P,P,P) MESG( Enter required turbulence model: MESG( The options are: MESG( LB - Lam-Brem low-Re k-e model MESG( LBY - Lam-Brem low-Re k-e model + Yap corr. MESG( 2L - 2-Layer low-Re k-e model MESG( KWR - k-w low-Re Wilcox 2008 model MESG( KWS - k-w low-Re SST model (default) READVDU(CTUR,CHAR,LBY) CASE :CTUR: OF WHEN LB,2 + TEXT(LoRe LB K E_2D IMPINGING ROUND JET + TLSC=EP;KELIN=3 + MESG(Lam-Bremhorst low-Re k-e model + TURMOD(KEMODL-LOWRE) WHEN LBY,3 + TEXT(LoRe LB K E YAP_2D IMPINGING ROUND JET + TLSC=EP;KELIN=3 + MESG(LamB low-Re k-e +Yap correction + TURMOD(KEMODL-LOWRE-YAP) WHEN 2L,2 + TEXT(2-LAYER_K E 2D IMPINGING ROUND JET + TLSC=EP;KELIN=3 + MESG(2-LAYER k-e model + TURMOD(KEMODL-2L) + SELREF=F WHEN KWR,3 + TEXT(LoRe Wilcox 2008 K W_2D IMPINGING ROUND JET + TLSC=OMEG;KWMOD=T + MESG(Wilcox 2008 low-Re k-w model + TURMOD(KWMODLR-LOWRE);EPSIN=EPSIN/(0.09*TKEIN) + EPFRE=EPFRE/(0.09*KEFRE) WHEN KWS,3 + TEXT(LoRe K-W SST_2D IMPINGING ROUND JET + TLSC=OMEG;KWMOD=T + MESG(Low-Re k-w SST model + TURMOD(KWSST-LOWRE);EPSIN=EPSIN/(0.09*TKEIN) + EPFRE=EPFRE/(0.09*KEFRE) ENDCASE SOLUTN(V1,P,P,P,P,P,N);SOLUTN(W1,P,P,P,P,P,N) SOLUTN(TEM1,P,P,P,P,P,N) STORE(LEN1,ENUT,YPLS,SKIN,STRS) __________________________________________________________________ SAVE7BEGIN (STORED of DWAL is 0.5*DZW) (stored of TDIF is TEM1-:TAMB:) ** Local Heat transfer coefficient in (kW/m^2.degC) (STORED TWAL at PLATE is TEM1) ** Plate temperature (STORED TWAL at PLATE is TEM1+:QPLATE:*DWAL/COND) ** Local heat transfer coefficient (STORED HTCL at PLATE is :QPLATE:/(TWAL-:TAMB:+TINY)) ** Nusselt number (STORED of NUSS is HTCL*:DIAM:/:COND:) ** Scaled Nusselt number NUFAC=REY**(0.7)*PRLAM**(0.4) (STORED of NUS is NUSS/:NUFAC:) SAVE7END _____________________________________________________________________ GROUP 9. Properties of the medium (or media) FLOW=RHO1*WJET*AIN QIN=FLOW*TJET*CP PRT(TEM1)=0.86;PRNDTL(TEM1)=PRLAM CP1=CP GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=1.E-10;FIINIT(V1)=0.0;FIINIT(TEM1)=TAMB FIINIT(KE)=TKEIN IF(KWMOD) THEN + FIINIT(OMEG)=TKEIN/(10.*ENUL) ELSE + FIINIT(EP)=0.09*TKEIN**2/(10.*ENUL) ENDIF PATCH(INWJET,INIVAL,1,1,1,NYJ,1,NZ,1,1) COVAL(INWJET,W1,ZERO,WJET) GROUP 12. Convection and diffusion adjustments GROUP 13. Boundary conditions and special sources ** plate heating WALL(PLATE,HIGH,1,NX,1,NY,NZ,NZ,1,1) IF(FIXQ) THEN + PATCH(QPLATE,HIGH,1,NX,1,NY,NZ,NZ,1,1) + COVAL(QPLATE,TEM1,FIXFLU,QPLATE) ELSE ** wall boundary conditions + COVAL(PLATE,TEM1,GRND2,TWAL) ENDIF ** Uniform inlet conditions INLET(JET1,LOW,1,1,1,NYJ,1,1,1,1) VALUE(JET1,P1,RHO1*WJET);VALUE(JET1,W1,WJET) VALUE(JET1,:TLSC:,EPSIN);VALUE(JET1,TEM1,TJET) VALUE(JET1,KE,TKEIN) ** low entrainment boundary PATCH(TOP,LOW,1,1,NYJ+1,NY,1,1,1,1) COVAL(TOP,P1,1.E3,0.0);COVAL(TOP,W1,ONLYMS,0.0) COVAL(TOP,U1,ONLYMS,0.0);COVAL(TOP,V1,ONLYMS,0.0) COVAL(TOP,:TLSC:,ONLYMS,EPFRE) COVAL(TOP,KE,ONLYMS,KEFRE);COVAL(TOP,TEM1,ONLYMS,TAMB) ** top entrainment boundary PATCH(SIDE,NORTH,1,1,NY,NY,1,NZ,1,1) COVAL(SIDE,P1,1.E8,0.0);COVAL(SIDE,W1,ONLYMS,0.0) COVAL(SIDE,V1,ONLYMS,0.0);COVAL(SIDE,:TLSC:,ONLYMS,EPFRE) COVAL(SIDE,KE,ONLYMS,KEFRE);COVAL(SIDE,TEM1,ONLYMS,TAMB) GROUP 15. Termination of sweeps LSWEEP=6000 GROUP 16. Termination of iterations GROUP 17. Under-relaxation devices DTF=1.5*HEIGHT/WJET/NZ DTF=1.5*DTF RELAX(W1,FALSDT,DTF); RELAX(V1,FALSDT,DTF) RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF) RELAX(TEM1,LINRLX,0.3) IF(KWMOD) THEN + RELAX(KE,FALSDT,DTF); RELAX(OMEG,FALSDT,DTF) ELSE + KELIN=3; RELAX(KE,LINRLX,0.4); RELAX(EP,LINRLX,0.7) ENDIF VARMAX(TEM1)=5.*TAMB;VARMIN(TEM1)=0.9*TAMB GROUP 22. Spot-value print-out IYMON=42;IZMON=30 GROUP 23. Field print-out and plot control NPLT=25;TSTSWP=-1;WALPRN=T;ITABL=3 OUTPUT(ENUT,Y,N,N,Y,Y,Y) OUTPUT(YPLS,N,N,N,N,N,N);OUTPUT(SKIN,N,N,N,N,N,N) OUTPUT(TEM1,P,P,P,P,Y,Y) SPEDAT(SET,OUTPUT,NOFIELD,L,T) GROUP 22. Monitor print-out SPEDAT(SET,GXMONI,PLOTALL,L,T) DISTIL=T CASE :CTUR: OF WHEN LB,2 +EX(TWAL)=2.769E+00;EX(DWAL)=2.727E-02 +EX(LEN1)=6.811E-02;EX(TEM1)=3.002E+02 +EX(P1 )=1.212E-02;EX(V1 )=6.081E-02 +EX(W1 )=1.025E-01;EX(KE )=4.649E-03 +EX(EP )=2.924E-03;EX(NUS )=9.850E-04 +EX(NUSS)=2.116E+00;EX(HTCL)=5.529E-02 +EX(TDIF)=3.664E-01;EX(STRS)=1.013E-05 +EX(SKIN)=2.043E-01;EX(YPLS)=2.714E-03 +EX(ENUT)=2.315E-03;EX(EPKE)=6.916E+00 +EX(LTLS)=8.152E+00;EX(WDIS)=1.936E+00 WHEN LBY,3 +EX(TWAL)=2.797E+00;EX(DWAL)=2.727E-02 +EX(LEN1)=5.919E-02;EX(LTLS)=8.152E+00 +EX(WDIS)=1.936E+00;EX(TEM1)=3.003E+02 +EX(P1 )=1.216E-02;EX(V1 )=6.194E-02 +EX(W1 )=1.024E-01;EX(KE )=3.960E-03 +EX(EP )=1.672E-03;EX(NUS )=5.082E-04 +EX(NUSS)=1.092E+00;EX(HTCL)=2.853E-02 +EX(TDIF)=5.382E-01;EX(STRS)=6.534E-06 +EX(SKIN)=2.803E-01;EX(YPLS)=2.208E-03 +EX(ENUT)=1.955E-03;EX(EPKE)=3.957E+05 WHEN 2L,2 +EX(TWAL)=2.797E+00;EX(DWAL)=2.727E-02 +EX(ENUT)=3.406E-03;EX(LEN1)=1.742E-01 +EX(LTLS)=8.152E+00;EX(WDIS)=1.936E+00 +EX(TEM1)=3.004E+02;EX(EPKE)=1.362E+01 +EX(P1 )=1.214E-02;EX(V1 )=6.179E-02 +EX(W1 )=1.024E-01;EX(KE )=3.959E-03 +EX(EP )=1.745E-03;EX(NUS )=4.968E-04 +EX(NUSS)=1.067E+00;EX(HTCL)=2.789E-02 +EX(TDIF)=5.497E-01;EX(STRS)=6.748E-06 +EX(SKIN)=2.649E-01;EX(YPLS)=2.252E-03 +EX(ENUT)=2.205E-03;EX(LEN1)=2.264E-01 WHEN KWS,3 +EX(P1 )=1.023E-02;EX(V1 )=5.771E-02 +EX(W1 )=9.500E-02;EX(KE )=4.629E-03 +EX(EP )=1.219E-03;EX(NUS )=5.310E-04 +EX(NUSS)=1.141E+00;EX(HTCL)=2.980E-02 +EX(TDIF)=5.037E-01;EX(STRS)=5.361E-06 +EX(SKIN)=3.080E-01;EX(YPLS)=2.040E-03 +EX(ENUT)=2.347E-03;EX(LEN1)=6.708E-02 +EX(GEN1)=5.271E+01;EX(BF2 )=4.951E-01 +EX(TWAL)=2.819E+00;EX(DWAL)=2.727E-02 +EX(LTLS)=8.152E+00;EX(WDIS)=1.936E+00 +EX(BF1 )=3.605E-01;EX(OMEG)=5.162E+02 +EX(TEM1)=3.005E+02 WHEN KWR,3 +EX(TWAL)=2.800E+00;EX(DWAL)=2.727E-02 +EX(FBP )=8.954E-01;EX(OMEG)=5.475E+02 +EX(TEM1)=3.004E+02;EX(P1 )=8.929E-03 +EX(V1 )=5.584E-02;EX(W1 )=9.211E-02 +EX(KE )=6.071E-03;EX(EP )=1.393E-03 +EX(NUS )=5.024E-04;EX(NUSS)=1.079E+00 +EX(HTCL)=2.820E-02;EX(TDIF)=5.670E-01 +EX(STRS)=4.085E-06;EX(SKIN)=4.030E-01 +EX(YPLS)=1.783E-03;EX(ENUT)=4.138E-03 +EX(LEN1)=9.813E-02;EX(DWDZ)=6.837E-02 +EX(DWDY)=9.827E-02;EX(DVDZ)=1.067E+00 +EX(DVDY)=3.511E-02;EX(DUDX)=4.751E-02 +EX(GEN1)=3.182E+01;EX(XWP )=1.419E+00 ENDCASE STOP