TALK=T;RUN( 1, 1)
TEXT(2D BLUFF-BODY STABILISED METHANE JET: T301
TITLE
  DISPLAY
  The case considered is 2d steady, axisymmetric, turbulent
  non-reacting flow behind a bluff-body flame holder. The flow
  configuration consists of a 5.4mm diameter methane jet seperated
  from an outer, annular air flow by a 50mm diameter bluff body.
  The flow is characterised by reverse flow in the annular air
  stream and exhibits well-defined fuel and annular air stagnation
  points along the centre-line. This case has been studied
  experimentally by Schefer et al (Comb.Sci.&Tech., Vol.56, p101,
  1987]) and was the subject of an ASCF Ercoftac CFD Workshop
  (Org: D.Garreton & O.Simonin, EDF, Chatou, France, 1994).
  ENDDIS
  
  The problem requires very high computational resolution for
  numerical accuracy, and like other disk-related predictions
  (e.g.McGuirk et al[1985] & Durao et al[1991]) in the literature, 
  the standard k-e model underestimates the size of the recirculation 
  zone, and hence the location of the first stagnation point. The near 
  field of these flows are also known to be sensitive to the inlet 
  conditions, and no assessment has been made here of the influence 
  of inlet values, and no grid refinement studies have been carried out.
 
  The measured fuel stagnation point is located 38.7mm downstream of 
  the body while the air stagnation point occurs at about 63mm. The 
  table below compares these experimental values with those computed
  from the various turbulence models.

                  KE    CK    RNG    RKE   KWR   KWS   DATA
   Fuel Xstag   25.8   35.0   34.2  13.1  33.7  22.1  38.7
   Air Xstag    57.5   64.6   62.6  62.9  51.5  51.2  63.0

   1) R.W.Schefer, M.Namazian and J.Kelly, ‘Velocity measurements in 
	  a turbulent non-premixed bluff-body stabilised flame’, 
	  Comb.Sci.&Tech., Vol.56, p101, (1987).
   2) J.J.McGuirk, C.Papadimitriou and A.M.K.P.Taylor, ‘Reynolds 
	  stress model calculations of two-dimensional plane and 
	  axisymmetric recirculating flows’, Proc. 5th Turbulent Shear 
	  Flows Conference, Cornell Univ., USA, (1985).
   3) D.F.G.Durao, G.Knittel, J.C.F.Pereira and J.M.P.Rocha, 
	  ‘Measurements and modelling of the turbulent near wake 
	  flow of a disk with a central jet, Proc. 8th Turbulent 
	  Shear Flows Conference, Technical University of Munich, 
	  17.5, (1991).

 * GROUP 1. Run title and other preliminaries *
TEXT(2D BLUFF-BODY STABILISED METHANE JET
  AUTOPLOT USE
  FILE
  phida 3
 
  D 1 W1 Y 1
  PLOT;SCALE X 0 .15;LEVEL X .0441;LEVEL X .0684
  LEVEL Y 0.
  ENDUSE
  PHOTON USE
    p
 
 
    0.20443E+04 0.15633E+04 CR
    gr ou x 1;vec x 1 sh
    con w1 x 1
    val 1
    0.
    mag gr 2
    0.29927E+04 0.90539E+03 CR
  ENDUSE
BOOLEAN(KWMOD);KWMOD=F
CHAR(CTURB)
REAL(RHOAIR,TIN,RAIR,RCON,RHOGAS,DGAS,DBODY,DANN,DTF,ENUAIR)
REAL(WGAS,KEGAS,EPGAS,WAIR,KEAIR,EPAIR,WARP,KEARP,EPARP)
REAL(GYM,GYP,GYDR,GY,GYDR2,GYDR3,GYDR4,GLM,GWI,GEPI,GKI,GOMI)
REAL(Y1,Y2,Y3,Y4,Z1,Z2,RGAS,FRIC,REY,US,US2,OMGAS,OMAIR,OMARP)
INTEGER(NY1,NY2,NY3,NY4,NZ1,NZ2,NYI);CHAR(SCHM)
PRESS0=1.01325E5;RAIR=8314.43/29.;TIN=298.;RCON=8314.43/16.
ENUAIR=1.58E-5
DGAS=5.4E-3;DBODY=0.05;DANN=0.1;RGAS=0.5*DGAS
 
  **  Axial geometry
Z1=2.*DANN;NZ1=85
  **  Central-jet radial geometry
Y1=RGAS;NY1=12
  **  Bluff-body radial geometry
Y2=0.5*DBODY;NY2=26
  **  Annular-jet radial geometry
Y3=0.5*DANN;NY3=15
  **  External air-stream radial geometry
Y4=0.5*(2.*DANN);NY4=12
 
NYI=NY1+NY2+NY3
  ** gas central-jet injection
WGAS=21.
    KEGAS=1.6;EPGAS=1100.
RHOGAS=PRESS0/(RCON*TIN)
  ** air annular-jet injection
RHOAIR=PRESS0/(RAIR*TIN)
WAIR=25.
KEAIR=(0.007*WAIR)**2;EPAIR=0.1643*(KEAIR**1.5)/(0.09*(Y3-Y2))
OMAIR=EPAIR/(0.09*KEAIR)
  ** external air stream
WARP=0.1;KEARP=0.012;EPARP=0.019;OMARP=EPARP/(0.09*KEARP)
KEARP=(0.01*WARP)**2;EPARP=0.09*KEARP*KEARP/ENUL
OMARP=EPARP/(0.09*KEARP)
 
REY=WGAS*DGAS/ENUAIR;FRIC=1.0/(1.82*LOG10(REY)-1.64)**2
US=WGAS*(FRIC/8.0)**0.5;US2=US*US
KEGAS=2.*US2;EPGAS=0.1643*(KEGAS**1.5)/(0.09*Y1)
OMGAS=EPGAS/(0.09*KEGAS)
REY
     GROUP 3. X-direction grid specification
CARTES=F;XULAST=0.1
     GROUP 4. Y-direction grid specification
NREGY=4;REGEXT(Y,1)
  fuel jet
IREGY=1;GRDPWR(Y,NY1,Y1,1.0)
  bluff body
IREGY=2;GRDPWR(Y,-NY2,Y2-Y1,1.1)
  air jet
IREGY=3;GRDPWR(Y,-NY3,Y3-Y2,1.1)
  free stream
IREGY=4;GRDPWR(Y,NY4,Y4-Y3,1.4)
    GROUP 5. Z-direction grid specification
GRDPWR(Z,NZ1,Z1,1.3)
    GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1,C1);SOLUTN(P1,Y,Y,Y,P,P,P)
SOLUTN(V1,P,P,P,P,P,N);SOLUTN(W1,P,P,P,P,P,N)
SOLUTN(C1,Y,Y,Y,P,P,N);STORE(ENUT,RHO1)
SOLVE(P1,W1,V1);SOLUTN(P1,Y,Y,Y,N,N,N);STORE(ENUT)
SOLUTN(W1,P,P,P,P,P,N);SOLUTN(V1,P,P,P,P,P,N)
MESG( Enter the required turbulence model:
MESG(  KE   - Standard k-e model (default)
MESG(  CK   - Chen-Kim k-e model
MESG(  RNG  - RNG      k-e model
MESG(  RKE  - Realisable k-e model
MESG(  KWR  - Wilcox 2008 k-w model
MESG(  KWS  - k-w SST model
MESG(
READVDU(CTURB,CHAR,KE)
CASE :CTURB: OF
WHEN KE,2
+TEXT(KE-2D BLUFF-BODY STABILISED METHANE JET
+ MESG(Standard k-e model
+ TURMOD(KEMODL)
WHEN CK,2
+TEXT(CK-2D BLUFF-BODY STABILISED METHANE JET
+ MESG(Chen-Kim k-e model
+ TURMOD(KECHEN)
WHEN RNG,3
+ TEXT(RNG-2D BLUFF-BODY STABILISED METHANE JET
+ MESG(RNG k-e model
+ TURMOD(KERNG)
+ STORE(ETA,ALF,GEN1)
+ OUTPUT(ALF,Y,N,P,Y,Y,Y);OUTPUT(ETA,Y,N,P,Y,Y,Y)
WHEN RKE,3
+ TEXT(RKE-2D BLUFF-BODY STABILISED METHANE JET
+ MESG(Realisable k-e model
+ TURMOD(KEREAL);STORE(C1E)
+ OUTPUT(CMU,P,P,P,P,Y,Y);OUTPUT(C1E,P,P,P,P,Y,Y)
WHEN KWR,3
+ TEXT(KWR-2D BLUFF-BODY STABILISED METHANE JET
+ MESG(Wilcox 2008 k-w model
+ TURMOD(KWMODLR);STORE(FBP);FIINIT(FBP)=1.0
+ KWMOD=T
WHEN KWS,3
+ TEXT(KW SST-2D BLUFF-BODY STABILISED METHANE JET
+ MESG(Menter k-w SST model
+ TURMOD(KWSST)
+ KWMOD=T
+ STORE(BF1,BF2,GEN1,SIGK,SIGW,CDWS)
+ STORE(CWAL,CWBE)
+ FIINIT(BF1)=1.0;FIINIT(BF2)=1.0 
ENDCASE
    GROUP 8. Terms (in differential equations) & devices
DENPCO=T
     GROUP 9. Properties of the medium (or media)
TMP1=298.
   RHO1=LINSCAL;RHO1A=RHOAIR;RHO1B=RHOGAS-RHOAIR;RHO1C=16
RHO1=RECSCAL;RHO1A=1./RHOAIR;RHO1B=1./RHOGAS-1./RHOAIR;RHO1C=16
ENUL=ENUAIR;PRT(C1)=0.7
     GROUP 10. Inter-phase-transfer processes and properties
     GROUP 11. Initialization of variable or porosity fields *
  ** Bluff-body (this could be removed)
WALLCO=GRND3
FIINIT(RHO1)=RHOAIR;FIINIT(KE)=KEAIR;FIINIT(EP)=EPAIR
IF(KWMOD) THEN
+ FIINIT(OMEG)=OMAIR
ENDIF
     GROUP 13. Boundary conditions and special sources *
 ** Central fuel injection
(stored of WIN at FUEL is WGAS*(1.2342-0.2916*YG/RGAS+0.4809*(YG/RGAS)^2-0.629*(YG/RGAS)^3)!ZSLSTR)
(stored of KEIN at FUEL is US2*(1.+(2./3.)*(YG/RGAS)+(10./3.)*(YG/RGAS)^3)!ZSLSTR)
(stored of MIXL at FUEL is RGAS*(0.14-0.08*(YG/RGAS)^2-0.06*(YG/RGAS)^4)!ZSLSTR)
(stored of EPIN at FUEL is 0.1643*KEIN^1.5/MIXL!ZSLSTR)
(stored of OMIN at FUEL is EPIN/(0.09*KEIN)!ZSLSTR)
PATCH(FUEL,LOW,1,NX,1,NY1,1,1,1,1)
(source of P1 at FUEL is COVAL(FIXFLU,RHOGAS*WIN))
(source of W1 at FUEL is COVAL(ONLYMS,WIN))
(source of KE at FUEL is COVAL(ONLYMS,KEIN))
IF(KWMOD) THEN
(source of OMEG at FUEL is COVAL(ONLYMS,OMIN))
ELSE
(source of EP at FUEL is COVAL(ONLYMS,EPIN))
ENDIF
COVAL(FUEL,C1,ONLYMS,1.0)
  ** Annular air injection
PATCH(AIR,LOW,1,NX,#3,#3,1,1,1,LSTEP)
COVAL(AIR,P1,FIXFLU,RHOAIR*WAIR)
COVAL(AIR,W1,ONLYMS,WAIR);COVAL(AIR,V1,ONLYMS,0.)
COVAL(AIR,KE,ONLYMS,KEAIR);COVAL(AIR,EP,ONLYMS,EPAIR)
IF(KWMOD) THEN
+ COVAL(AIR,OMEG,ONLYMS,OMAIR)
ENDIF
  ** Free stream inlet
PATCH(FREEIN,LOW,1,1,#4,#4,1,1,1,LSTEP)
COVAL(FREEIN,V1,ONLYMS,0.);COVAL(FREEIN,W1,ONLYMS,WARP)
COVAL(FREEIN,P1,FIXFLU,WARP*RHOAIR)
COVAL(FREEIN,KE,ONLYMS,KEARP);COVAL(FREEIN,EP,ONLYMS,EPARP)
IF(KWMOD) THEN
+ COVAL(FREEIN,OMEG,ONLYMS,OMARP)
ENDIF
  ** Exit boundary
OUTLET(EXIT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP);COVAL(EXIT,P1,10.,0.0)
  ** Free stream outer boundary
PATCH(FREES,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP)
COVAL(FREES,P1,10.0,0.0);COVAL(FREES,W1,ONLYMS,WARP)
COVAL(FREES,KE,ONLYMS,KEARP);COVAL(FREES,EP,ONLYMS,EPARP)
IF(KWMOD) THEN
+ COVAL(FREES,OMEG,ONLYMS,OMARP)
ENDIF
  ** Low wall boundary on bluff body
WALL(BLUFF,LOW,1,NX,#2,#2,1,1,1,LSTEP)
    GROUP 15. Termination of sweeps
LSWEEP=1500
CASE :CTURB: OF
WHEN RKE,3
+ LSWEEP=2500 
ENDCASE
    GROUP 17. Under-relaxation devices
DTF=0.1*ZWLAST/WGAS
RELAX(P1,LINRLX,1.0)
RELAX(V1,FALSDT,DTF);RELAX(W1,FALSDT,DTF)
RELAX(C1,LINRLX,0.5);RELAX(RHO1,LINRLX,0.3)
IF(KWMOD) THEN
+ RELAX(KE,LINRLX,0.3);RELAX(OMEG,LINRLX,0.3)
ELSE
+ RELAX(KE,LINRLX,0.3);RELAX(EP,LINRLX,0.3)
+ KELIN=3
ENDIF
    GROUP 18. Limits on variables or increments to them
VARMIN(C1)=1.E-10;VARMAX(C1)=1.0
    GROUP 21. Print-out of variables
    GROUP 22. Spot-value print-out
IXMON=1;IYMON=NY/2;IZMON=NZ-3
    GROUP 23. Field print-out and plot control
ITABL=3;NPRINT=LSWEEP;TSTSWP=-1;NYPRIN=1
WALPRN=F;NAMGRD=CONV;UCONV=T
SPEDAT(SET,GXMONI,PLOTALL,L,T)
SPEDAT(SET,OUTPUT,NOFIELD,L,T)
OUTPUT(ENUT,Y,N,Y,N,Y,Y)
DISTIL=T
CASE :CTURB: OF
WHEN KE,2
+EX(P1  )=1.834E+01;EX(V1  )=7.568E-01
+EX(W1  )=1.283E+01;EX(KE  )=9.551E+00
+EX(EP  )=4.140E+03;EX(C1  )=5.194E-02
+EX(EPKE)=2.912E+02;EX(OMIN)=5.132E+01
+EX(EPIN)=3.029E+01;EX(MIXL)=5.950E-07
+EX(KEIN)=8.958E-03;EX(WIN )=4.979E-02
+EX(RHO1)=1.150E+00;EX(ENUT)=3.238E-03
WHEN CK,2
+EX(P1  )=1.882E+01;EX(V1  )=7.377E-01
+EX(W1  )=1.293E+01;EX(KE  )=7.044E+00
+EX(EP  )=3.513E+03;EX(C1  )=6.410E-02
+EX(EPKE)=3.243E+02;EX(OMIN)=5.132E+01
+EX(EPIN)=3.029E+01;EX(MIXL)=5.950E-07
+EX(KEIN)=8.958E-03;EX(WIN )=4.979E-02
+EX(RHO1)=1.142E+00;EX(ENUT)=2.262E-03
WHEN RNG,3
+EX(P1  )=1.890E+01;EX(V1  )=7.450E-01
+EX(W1  )=1.302E+01;EX(KE  )=8.535E+00
+EX(EP  )=3.675E+03;EX(C1  )=6.257E-02
+EX(EPKE)=3.110E+02;EX(OMIN)=5.132E+01
+EX(EPIN)=3.029E+01;EX(MIXL)=5.950E-07
+EX(KEIN)=8.958E-03;EX(WIN )=4.979E-02
+EX(GEN1)=4.066E+06;EX(RHO1)=1.143E+00
+EX(ENUT)=2.810E-03;EX(ALF )=3.010E+00
+EX(ETA )=4.570E+00
WHEN RKE,3
+EX(P1  )=1.915E+01;EX(V1  )=8.003E-01
+EX(W1  )=1.284E+01;EX(KE  )=1.000E+01
+EX(EP  )=3.509E+03;EX(C1  )=3.914E-02
+EX(OMIN)=5.132E+01;EX(EPIN)=3.029E+01
+EX(MIXL)=5.950E-07;EX(KEIN)=8.958E-03
+EX(WIN )=4.979E-02;EX(C1E )=4.510E-01
+EX(DWDZ)=1.532E+02;EX(DWDY)=6.598E+02
+EX(DVDZ)=4.564E+01;EX(DVDY)=9.406E+01
+EX(DUDX)=8.139E+01;EX(EPKE)=2.931E+02
+EX(CMU )=1.307E-01;EX(RHO1)=1.157E+00
+EX(ENUT)=7.337E-03
WHEN KWR,3
+EX(P1  )=2.015E+01;EX(V1  )=8.150E-01
+EX(W1  )=1.315E+01;EX(KE  )=1.818E+01
+EX(EP  )=5.288E+03;EX(C1  )=5.650E-02
+EX(OMIN)=5.132E+01;EX(EPIN)=3.029E+01
+EX(MIXL)=5.950E-07;EX(KEIN)=8.958E-03
+EX(WIN )=4.979E-02;EX(DWDZ)=1.530E+02
+EX(DWDY)=8.305E+02;EX(DVDZ)=4.655E+01
+EX(DVDY)=1.037E+02;EX(DUDX)=6.987E+01
+EX(GEN1)=4.184E+06;EX(FBP )=8.719E-01
+EX(XWP )=2.393E+03;EX(OMEG)=2.960E+03
+EX(RHO1)=1.148E+00;EX(ENUT)=1.110E-02
WHEN KWS,3
+EX(P1  )=1.845E+01;EX(V1  )=7.901E-01
+EX(W1  )=1.301E+01;EX(KE  )=1.337E+01
+EX(EP  )=5.154E+03;EX(C1  )=4.632E-02
+EX(OMIN)=5.132E+01;EX(EPIN)=3.029E+01
+EX(MIXL)=5.950E-07;EX(KEIN)=8.958E-03
+EX(WIN )=4.979E-02;EX(CWBE)=8.247E-02
+EX(CWAL)=4.451E-01;EX(CDWS)=6.142E+05
+EX(SIGW)=1.204E+00;EX(SIGK)=1.043E+00
+EX(LTLS)=2.342E-02;EX(WDIS)=1.464E-01
+EX(GEN1)=3.108E+06;EX(OMEG)=2.913E+03
+EX(RHO1)=1.154E+00;EX(ENUT)=4.841E-03
+EX(BF2 )=1.447E-01;EX(BF1 )=4.155E-02
ENDCASE
STOP