TEXT(Boiling 2-Phase Flow in S-bend Duct:W886
TITLE
DISPLAY
This case simulates the steady flow of a two-phase mixture in a
2-D duct, with heated walls.
The mixture has uniform composition at inlet; but the distribution
changes with distance downstream, for two reasons, namely:-
1. the denser fluid moves to the outside of the bends; and
2. dense fluid changes into light, through boiling near the
heated walls.
You may determine whether the activate both effects by your answer
the following question.
This Q1 contains PHOTON USE commands.
ENDDIS
GROUP 1. Run title
REAL(REYNO,WIN,DIAM)
REYNO=3.E3;DIAM=.3;WIN=1.0
REYNO
GROUP 6. Body-fitted coordinates or grid distortion
BFC=T;NONORT=T
REAL(L1,L2,L3,RAD1,RAD2);INTEGER(NZ1,NZ2,NZ3,NZ4,NZ5,IZ1,IZ2)
L1=1;L2=1;L3=1
RAD1=.2;RAD2=.2
NZ1=6;NZ2=10;NZ3=6;NZ4=10;NZ5=6
NZ=NZ1+NZ2+NZ3+NZ4+NZ5
GSET(D,1,10,NZ,0.1,DIAM,1)
IZ2=NZ1+1
GSET(C,K:IZ2:,F,K1,+,0,0,L1,INC,-1.5)
IZ1=IZ2;IZ2=IZ1+NZ2
GSET(C,K:IZ2:,F,K:IZ1:,RX,-3.14159,DIAM+RAD1,L1,INC,1)
IZ1=IZ2;IZ2=IZ1+NZ3
GSET(C,K:IZ2:,F,K:IZ1:,+,0,0,-L2,INC,S1.5)
IZ1=IZ2;IZ2=IZ1+NZ4
GSET(C,K:IZ2:,F,K:IZ1:,RX,3.14159,2*(DIAM+RAD1)+RAD2,L1-L2,INC,1)
IZ1=IZ2;IZ2=IZ1+NZ5
GSET(C,K:IZ2:,F,K:IZ1:,+,0,0,L3,INC,1.5)
** Set wup=t to account better for the high curvature of
the w resolute...
WUP=T
GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1);SOLUTN(P1,Y,Y,Y,N,N,N)
SOLUTN(V1,P,P,P,P,P,N);SOLUTN(W1,P,P,P,P,P,N)
ONEPHS=F
SOLVE(V2,W2,R1,R2,H1,H2)
SOLUTN(V2,P,P,P,P,P,N);SOLUTN(W2,P,P,P,P,P,N)
SOLUTN(R1,P,P,P,P,P,N);SOLUTN(R2,P,P,P,P,P,N)
SOLUTN(H1,P,P,P,P,P,N);SOLUTN(H2,P,P,P,P,P,N)
STORE(MDOT)
GROUP 9. Properties of the medium (or media)
ENUL=WIN*DIAM/REYNO;ENUT=500*ENUL
RHO1=750;RHO2=36
PHINT(H1)=4E5;PHINT(H2)=2.5E6
GROUP 10. Inter-phase-transfer processes and properties
CINT(H1)=10;CINT(H2)=10;CMDOT=HEATBL;CFIPS=1E2
GROUP 11. Initialization of variable or porosity fields
FIINIT(P1)=1.E-10;FIINIT(W1)=WIN;FIINIT(W2)=WIN
REAL(R1IN,R2IN)
R1IN=0.99;R2IN=1-R1IN
FIINIT(R1)=R1IN;FIINIT(R2)=R2IN
FIINIT(H2)=PHINT(H2);FIINIT(H1)=PHINT(H1)
GROUP 13. Boundary conditions and special sources
Inlet velocities and volume fractions are the same for
both phases
INLET(INLET,LOW,1,1,1,NY,1,1,1,1)
VALUE(INLET,P1,R1IN*RHO1*WIN);VALUE(INLET,W1,WIN)
VALUE(INLET,H1,PHINT(H1));VALUE(INLET,P2,R2IN*RHO2*WIN)
VALUE(INLET,W2,WIN);VALUE(INLET,H2,PHINT(H2))
PATCH(OUTLET,HIGH,1,1,1,NY,NZ,NZ,1,1)
COVAL(OUTLET,P1,1.E3*RHO1,0.0);COVAL(OUTLET,P2,1.E3*RHO2,0.0)
COVAL(OUTLET,H1,ONLYMS,SAME);COVAL(OUTLET,H2,ONLYMS,SAME)
MESG(ACTIVATE HEAT TRANSFER? (Y/N)
READVDU(ANS,CHAR,N)
IF(:ANS:.EQ.Y) THEN
+ WALL(TOP,NORTH,1,1,NY,NY,1,NZ,1,1)
+ COVAL(TOP,H1,LOGLAW,4.5E5)
+ WALL(BOT,SOUTH,1,1,1,1,1,NZ,1,1)
+ COVAL(BOT,H1,LOGLAW,4.5E5)
+ PATCH(HEATER,NORTH,1,1,NY,NY,NZ1+(NZ2/2)+1,NZ1+NZ2,1,1)
+ COVAL(HEATER,H1,FIXFLU,1E5)
ELSE
+ SOLUTN(H1,Y,N,N,N,N,N)
+ SOLUTN(H2,Y,N,N,N,N,N)
ENDIF
GROUP 15. Termination of sweeps
LSWEEP=200;SELREF=T;RESFAC=0.1
GROUP 17. Under-relaxation devices
RELAX(P1,LINRLX,0.5)
REAL(DTF,FAC)
DTF=(L1/NZ1)/WIN
FAC=10
RELAX(V1,FALSDT,0.1*DTF);RELAX(W1,FALSDT,FAC*DTF)
RELAX(V2,FALSDT,0.1*DTF);RELAX(W2,FALSDT,FAC*DTF)
RELAX(H1,FALSDT,FAC*DTF);RELAX(H2,FALSDT,FAC*DTF)
RELAX(MDOT,LINRLX,0.5)
GROUP 22. Spot-value print-out
IYMON=5;IZMON=32
Activate graphical convergence monitoring
TSTSWP=-1
GROUP 23. Field print-out and plot control
photon use
p;;;
gr x 1
msg dense-phase volume-fraction contours
con r1 x 1 fi;0.1
msg press return for dense-phase ucrt
pause; con off; red
msg dense-phase ucrt
con vcrt x 1 fi;0.1
msg press return for dense-phase wcrt
pause; con off; red
msg dense-phase wcrt
con wcrt x 1 fi;0.1
msg press return for p1
pause; con off; red
msg pressure
con p1 x 1 fi;0.1
msg press return for dense-phase velocity vectors
pause; con off; red; gr off;gr ou x 1; red; vec x 1 sh
enduse