TALK=T;RUN( 1, 1)
************************************************************
Q1 created by VDI menu, Version 2018, Date 25/01/18
CPVNAM=VDI; SPPNAM=FLAIR
************************************************************
Echo DISPLAY / USE settings
DISPLAY
Library Case I401: Aerosol deposition in a model room
The case considered is steady, isothermal airflow with aerosol
transport and deposition of 10 micron particles in a laboratory-
scale room environment. The Eulerian drift flux model is used
to simulate aerosol transport with surface deposition via the
3-layer deposition model of Chen & Lai (2004), which accounts
for the deposition mechanisms of gravity, Brownian & turbulent
diffusion. This case has been studied experimentally and
numerically by Chen et al (2006), Lai & Chen(2006, 2007),Zhao
& Wu (2007), Gao & Niu (2007), Zhao et al(2008) and Xu &
Wang(2017). Particles mainly deposit on the floor, and the
model predicts a floor deposition fraction of 69%, which
compares favourably with the range of values(60 to 80%)
reported by Lai & Chen (2206, 2007) using both Eulerian and
Lagrangian CFD models.
ENDDIS
PHOTON USE
p
up x
view y
con C6 y 1 fi;.1;pa
vec y 1;pa
ENDUSE
************************************************************
IRUNN = 1 ;LIBREF = 0
************************************************************
Group 1. Run Title
TEXT(I401: Aerosol deposition in a model room)
************************************************************
Echo save-block settings for Group 1
save1begin
Mono-sized 10 micron aerosol particles with a density of
1400 kg/m^3 enter the room with supply air at a Reynolds
number of 560. The flow is isothermal with a temperature
of 27degC. In the simulations the particle concentration
is normalized by its inlet value.
The model room is 0.8m long(z),0.4m wide(y) by 0.4 high(x),
and the air is supplied at ceiling level at z=0, and then
exhausted at floor level at z=0.8m. The inlet and outlet to
the room are both 0.04m square and located centrally in the
y direction. In the experiments, two inlet velocities of 0.225
and 0.45m/s were considered, corresponding to hourly air
exchange rates of 10 and 20, respectively. The simulation uses
the lower inflow rate of 0.225m/s and exploits symmetry about
the centre plane at y=2m.
The low inlet Reynolds number suggests laminar inflow in the
absence of any turbulence-promoting devices upstream, but
presumably turbulence was generated in the experiments.
References
----------
Chen, F.Z. & Lai, A.C.K, "An Eulerian model for particle
deposition under electrostatic and turbulent conditions",
J.Aerosol Science, Vol.35, p47-62, (2004).
Chen, F.Z., Yu, S.C.M., Lai, A.C.K.,"Modeling particle
distribution and deposition in indoor environments with a
new drift-flux model", Atmospheric Environment 40, 357–367,
(2006).
Lai, A.C.K., Chen, F.Z.,"Modeling particle deposition and
distribution in a chamber with a two-equation Reynolds-
averaged Navier–Stokes model",Aerosol Science 37,
1770–1780, (2006).
Lai, A.C.K., Chen, F.Z., "Comparison of a new Eulerian
model with a modified Lagrangian approach for particle
distribution and deposition indoors", Atmospheric Environment
41, 5249–5256, (2007).
Zhao, B., Wu, J. "Particle deposition in indoor environments:
Analysis of influencing factors", Journal of Hazardous
Materials, Vol. 147, Issues 1–2, page 439-448,(2007).
Gao, N.P., Niu, J.L., "Modeling particle dispersion and
deposition in indoor environments", Atmospheric Environment
41, 3862-3876, (2007)
Zhao, B., C Yang, C., Yang, X.,Liu, S.,"Particle dispersion
and deposition in ventilated rooms: testing and evaluation
of different Eulerian and Lagrangian models", Building and
Environment 43 (4), 388-397, (2008).
Xu, G., Wang, J.,"CFD modeling of particle dispersion and
deposition coupled with particle dynamical models in a
ventilated room", Atmospheric Environment 166, 300-314,
(2017).
save1end
************************************************************
Group 2. Transience
STEADY = T
************************************************************
Groups 3, 4, 5 Grid Information
* Overall number of cells, RSET(M,NX,NY,NZ,tolerance)
RSET(M,44,30,60)
************************************************************
Group 6. Body-Fitted coordinates
************************************************************
Group 7. Variables: STOREd,SOLVEd,NAMEd
* Non-default variable names
NAME(131)=VS1 ;NAME(132)=VDPH
NAME(133)=DI1 ;NAME(134)=VP1
NAME(135)=VSTR ;NAME(136)=TP1
NAME(137)=TR1 ;NAME(139)=VABS
NAME(140)=YPLS ;NAME(141)=VD1
NAME(142)=STRS ;NAME(143)=DEP1
NAME(144)=ENUL ;NAME(145)=SPH1
NAME(147)=EPKE ;NAME(148)=DEN1
NAME(149)=EL1 ;NAME(150)=ENUT
* Solved variables list
SOLVE(P1,U1,V1,W1,C6)
* Stored variables list
STORE(ENUT,EL1,DEN1,EPKE,SPH1,ENUL,DEP1,STRS)
STORE(VD1,YPLS,VABS,TR1,TP1,VSTR,VP1,DI1)
STORE(VDPH,VS1)
* Additional solver options
SOLUTN(P1,Y,Y,Y,N,N,Y)
SOLUTN(C6,Y,Y,Y,N,N,Y)
TURMOD(KERNG)
************************************************************
Group 8. Terms & Devices
NEWRH1 = T
NEWENL = T
************************************************************
Group 9. Properties
PRESS0 =1.01325E+05 ;TEMP0 =273.
* Domain material index is 2 signifying:
* Air using Ideal Gas Law, STP
SETPRPS(1, 2)
ENUL = GRND6
ENULA =1.46E-06 ;ENULB =110.
ENULC =8.0974E-11
TMP1 = GRND1
TMP1A =27. ;TMP1B =0.
TMP1C =0.
DRH1DP = GRND5
DVO1DT =3.33E-03
PRNDTL(C6)=0.7
PRT(KE)=0.7194 ;PRT(EP)=0.7194
************************************************************
Group 10.Inter-Phase Transfer Processes
************************************************************
Group 11.Initialise Var/Porosity Fields
FIINIT(P1)=0. ;FIINIT(W1)=0.225
FIINIT(C6)=0.
No PATCHes used for this Group
INIADD = F
NAMFI ='phida'
************************************************************
Group 12. Convection and diffusion adjustments
No PATCHes used for this Group
************************************************************
Group 13. Boundary & Special Sources
PATCH(DFLUX, CELL, 0, 0, 0, 0, 0, 0, 1, 1)
COVAL(DFLUX, C6, GRND4, GRND4)
BUOYA =-9.81 ; BUOYB =0.
BUOYC =0.
EGWF = T
************************************************************
Echo save-block settings for Group 13
save13begin
** estimate for turbulent inlet intensity
for fully developed duct flow
real(din,win,tint,kein,epin,mixl,fric,reyn)
real(tvis,tvisn,ust,enugas,rhogas,temk)
temk=27.0+temp0
rhogas=press0/(287.0*temk)
rhogas
enugas=1.46e-6*temk**1.5/(110.+temk)/rhogas
enugas
enugas=1.609e-5;rhogas=1.1768
din=0.04;win=0.225
reyn=win*din/enugas
reyn
fric=1./(1.82*log10(reyn)-1.64)**2
fric
ust=win*(fric/8.)**0.5
ust
kein=fric*win*win/4.
mixl=0.09*0.5*din
epin=0.1643*kein**1.5/mixl
kein
epin
tint=kein**0.5/win
tint
tvis=0.09*kein*kein/epin
tvis
tvisn=tvis/(ust*din)
tvisn
** inlet turbulent intensity for specified intensity
tint=0.3
tint
kein=(tint*win)**2
kein
epin=0.1643*kein**1.5/mixl
epin
tvis=0.09*kein*kein/epin
tvis
tvisn=tvis/(ust*din)
tvisn
real(vslip,rho_p,dpart,grava,vdep,rey,tpart,tpl)
** estimate of slip velocity & particle Reynolds number
dpart=10.e-6 ; rho_p=1.4e3
grava=9.81
vslip=rho_p*dpart*dpart*grava/(18.*rhogas*enugas)
rey=vslip*dpart/enugas
vslip
rey
tpart=rho_p*dpart**2/(18.*rhogas*enugas)
tpart
tpl=tpart*ust*ust/enugas
tpl
** deposition velocity in m/hr
(STORED of VDPH is VD1*3600.0)
** compute particle deposition fraction
(MAKE1 PDFRAC is 0.0)
(STORE1 PDFRAC is 1.-ABS(NETS(C6,OUT))/NETS(C6,INL))
(PRINT Part_dep_fract is PDFRAC)
** compute average floor deposition velocity in m/hr
(make1 SUMAF is 0.0)
(make1 SUMVD is 0.0)
(make1 SUMTP is 0.0)
(make1 SUMVP is 0.0)
(make1 SUMC6 is 0.0)
(store1 SUMAF at PBOT is SUM(AEAST))
(store1 SUMVD at PBOT is SUM(VD1*3600.*AEAST))
(store1 SUMTP at PBOT is SUM(TP1*AEAST))
(store1 SUMVP at PBOT is SUM(VP1*AEAST))
(store1 SUMC6 at PBOT is SUM(C6*AEAST))
(print Floor_avg_Vdep is SUMVD/SUMAF)
(print Floor_avg_C6 is SUMC6/SUMAF)
(print Floor_avg_T+ is SUMTP/SUMAF)
(print Floor_avg_Vd+ is SUMVP/SUMAF)
(print Floor_area is SUMAF)
save13end
************************************************************
Group 14. Downstream Pressure For PARAB
************************************************************
Group 15. Terminate Sweeps
LSWEEP = 700
RESFAC =1.0E-04
************************************************************
Group 16. Terminate Iterations
LITER(KE)=10 ;LITER(EP)=10
************************************************************
Group 17. Relaxation
RELAX(P1 ,LINRLX,1. )
RELAX(KE ,LINRLX,0.5 )
RELAX(EP ,LINRLX,0.5 )
RELAX(C6 ,FALSDT,10. )
KELIN = 3
************************************************************
Group 18. Limits
VARMAX(C6)=1. ;VARMIN(C6)=0.
************************************************************
Group 19. EARTH Calls To GROUND Station
NAMGRD =FLAR
GENK = T
PARSOL = F
IENUTA = 1
ISG62 = 1
SPEDAT(SET,DFLUX,CONSLP,L,F)
SPEDAT(SET,DFLUX,JWDEP,I,2)
SPEDAT(SET,OUTPUT,NOFIELD,L,T)
SPEDAT(SET,DFLUX,DFMODL,L,T)
SPEDAT(SET,DFLUX,DEPOMOD,I,4)
SPEDAT(SET,DFLUX,DENP1,R,1400.)
SPEDAT(SET,DFLUX,DIAP1,R,1.0E-05)
SPEDAT(SET,GXMONI,PLOTALL,L,T)
************************************************************
Group 20. Preliminary Printout
DISTIL = T ;NULLPR = F
NDST = 0
DSTTOL =1.0E-02
EX(P1)=0.01584 ;EX(U1)=5.68E-03
EX(V1)=2.622E-03 ;EX(W1)=0.01283
EX(KE)=1.327E-04 ;EX(EP)=1.108E-04
EX(C6)=0.1623 ;EX(VS1)=4.189E-03
EX(VDPH)=0.3427 ;EX(DI1)=4.838E+04
EX(VP1)=0.05074 ;EX(VSTR)=5.148E-04
EX(TP1)=1.072E-04 ;EX(TR1)=4.27E-04
EX(VABS)=0.01641 ;EX(YPLS)=0.1192
EX(VD1)=9.519E-05 ;EX(STRS)=3.946E-06
EX(DEP1)=2.104E-05 ;EX(ENUL)=1.572E-05
EX(SPH1)=1004. ;EX(EPKE)=0.3084
EX(DEN1)=1.177 ;EX(EL1)=9.338E-03
EX(ENUT)=4.638E-05
************************************************************
Group 21. Print-out of Variables
************************************************************
Group 22. Monitor Print-Out
IXMON = 4 ;IYMON = 2 ;IZMON = 52
NPRMON = 100000
NPRMNT = 1
TSTSWP = -1
************************************************************
Group 23.Field Print-Out & Plot Control
NPRINT = 100000
ISWPRF = 1 ;ISWPRL = 100000
No PATCHes used for this Group
************************************************************
Group 24. Dumps For Restarts
IDISPA = 2000 ;IDISPB = 0 ;IDISPC = 0
CSG1 ='SW'
GVIEW(P,4.940031E-03,0.999783,-0.02024)
GVIEW(UP,0.999986,-4.899642E-03,2.044586E-03)
GVIEW(WINDOW,1022,726)
GVIEW(DEPTH,3.0E+04)
GVIEW(VDIS,0.480721)
GVIEW(CENTRE,0.2,0.1,0.4)
> DOM, SIZE, 4.000000E-01, 2.000000E-01, 8.000000E-01
> DOM, MONIT, 2.369687E-02, 8.343028E-03, 7.095959E-01
> DOM, SCALE, 1.000000E+00, 1.000000E+00, 1.000000E+00
> DOM, INCREMENT, 1.000000E-02, 1.000000E-02, 1.000000E-02
> GRID, MINCELL, 0.034674 ,0.018621 ,4.570882E-03
> GRID, RSET_X_1, -3, 1.100000E+00,G
> GRID, RSET_X_2, -5, 1.100000E+00,G
> GRID, RSET_X_3, -28, 1.030000E+00,G
> GRID, RSET_X_4, -5, 1.100000E+00,G
> GRID, RSET_X_5, -3, 1.100000E+00,G
> GRID, RSET_Y_1, 4,-1.100000E+00,G
> GRID, RSET_Y_2, -26, 1.040000E+00,G
> GRID, RSET_Z_1, -60, 1.020000E+00,G
> DOM, T_AMBIENT, 2.700000E+01
> DOM, INI_AMB, YES
> DOM, INI_BUOY, YES
> OBJ, NAME, INL
> OBJ, POSITION, 3.400000E-01, 0.000000E+00, 0.000000E+00
> OBJ, SIZE, 4.000000E-02, 2.000000E-02, 0.000000E+00
> OBJ, GEOMETRY, cube3t
> OBJ, TYPE, INLET
> OBJ, PRESSURE, P_AMBIENT
> OBJ, VELOCITY, 0. ,0. ,0.225
> OBJ, INLET_C6, 1.
> OBJ, KE_IN, 4.556000E-03
> OBJ, EP_IN, 2.807200E-02
> OBJ, NAME, OUT
> OBJ, POSITION, 2.000000E-02, 0.000000E+00, AT_END
> OBJ, SIZE, 4.000000E-02, 2.000000E-02, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube12t
> OBJ, TYPE, OPENING
> OBJ, PRESSURE, P_AMBIENT
> OBJ, COEFFICIENT, 1000.
> OBJ, VELOCITY, SAME , SAME , SAME
> OBJ, TURBULENCE, SAME , SAME
> OBJ, NAME, NW
> OBJ, POSITION, 0.000000E+00, AT_END, 0.000000E+00
> OBJ, SIZE, TO_END, 0.000000E+00, TO_END
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, LW1
> OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ, SIZE, 3.400000E-01, 2.000000E-01, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, LW2
> OBJ, POSITION, 3.400000E-01, AT_END, 0.000000E+00
> OBJ, SIZE, 4.000000E-02, 1.800000E-01, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, COLOR-MODE, USER
> OBJ, COLOR-VAL, 80
> OBJ, NAME, LW3
> OBJ, POSITION, AT_END, 0.000000E+00, 0.000000E+00
> OBJ, SIZE, 2.000000E-02, 2.000000E-01, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, HW1
> OBJ, POSITION, 0.000000E+00, 0.000000E+00, AT_END
> OBJ, SIZE, 2.000000E-02, 2.000000E-01, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, HW2
> OBJ, POSITION, 2.000000E-02, AT_END, AT_END
> OBJ, SIZE, 4.000000E-02, 1.800000E-01, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, HW3
> OBJ, POSITION, AT_END, 0.000000E+00, AT_END
> OBJ, SIZE, 3.400000E-01, 2.000000E-01, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, TOP
> OBJ, POSITION, AT_END, 0.000000E+00, 0.000000E+00
> OBJ, SIZE, 0.000000E+00, TO_END, TO_END
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, PBOT
> OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ, SIZE, 0.000000E+00, TO_END, TO_END
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, cube11
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, ROUGH, 0.
> OBJ, WALL_CO, LOG-LAW
STOP