TALK=T;RUN( 1, 1)
 
 ************************************************************
   Q1 created by VDI menu, Version 2018, Date 17/01/18
 CPVNAM=VDI; SPPNAM=FLAIR
 ************************************************************
  Echo DISPLAY / USE settings
  DISPLAY
  Library Case I404: Deposition, horizontal duct @ 2.2m/s
  The case considered is 3d steady, isothermal, turbulent air flow
  in a horizontal square ventilation duct with the transport
  and deposition of particles. The Eulerian drift flux model is
  used to simulate particles with deposition by means of the
  3-layer deposition model of Chen & Lai (2004), which accounts
  for deposition by gravity, Brownian diffusion and turbophoresis.
  This case has been studied experimentally by Sippola and Nazaroff
  (2004), who for fully-developed flow, measured deposition rates
  of particles to the walls of the duct with nominal sizes ranging
  from 1 to 16 microns in a 0.152m square duct at each of three
  nominal air speeds: 2.2m/s, 5.3m/s, 9m/s, corresponding to
  Reynolds numbers of 21,957, 53,894 & 87,733. This particular Q1
  file employs the lowest air speed of 2.2m/s at a temperature of
  22degC so as to replicate Runs 1 to 5 of the experimental series,
  which consider deposition of 5 different particle sizes onto the
  four walls of the duct in the fully-developed region of the flow.
  ENDDIS
  PHOTON USE
   p
 
 
 
   up x
   view y
   con C6 y 1 fi;.1;pa
   vec y 1;pa
  ENDUSE
 ************************************************************
 IRUNN = 1 ;LIBREF = 0
 ************************************************************
  Group 1. Run Title
 TEXT(I404: Deposition, horizontal duct@2.2m/s)
 ************************************************************
  Echo save-block settings for Group  1
  save1begin
  Five different mono-sized aerosol particles with differing
  densities enter the horizontal duct with supply air at 2.2m/s
  and 22degC. The duct is 20 hydraulic diameters long, at
  which location the flow is essentially fully developed. In
  the simulations the particle concentration is normalized by
  the inlet concentration. The flow is symmetric about the duct
  centre, but this isn't exploited in the simulations. The case
  has been studied numerically by Zhao and Wu (2006).
 
  This particular Q1 file simulates the lowest air speed case so
  as to replicate Runs 1 to 5 of the experimental series, which
  have the following aerosol characteristics:
 
    Run  diameter   density    Tr+      Vd+      Tr+        Vd+
         (microns)  (kg/m^3)     measured          predicted
     7      1.0      1400     4.6E-3  3.5E-4    5.084E-3  3.908E-4
     8      2.8      1200     0.028   2.7E-3    3.103E-2  2.438E-3
     9      5.2      1200     0.098   0.011     0.104     8.691E-3
    10      9.1      1000     0.27    0.025     0.263     0.0245
    11     16.0      1000     0.72    0.073     0.805     0.0969
 
  where Tr+ (=Tr*Ust^2/enul_g) is the dimensional particle relaxation
  time, Vd+ (=Vd/Ust)is the dimensionless deposition velocity, enul_g
  is the kinematic laminar viscosity, Ust (=0.12m/s) is the friction
  velocity, Tr (=rho_p*diam_p^2*C/(18.*rho_g*enul_g) is the particle
  relaxation time and C is the Cunningham slip coefficient.
 
   References
   ----------
    Sippola, M.R. & Nazaroff,W.W., "Experiments Measuring Particle
    Deposition from Fully Developed Turbulent Flow in Ventilation
    Ducts", Aerosol Science & Technology, Vol.38, pp914–925,
    (2004)
 
    Sippola, M.R., "Particle Deposition in Ventilation Ducts", PhD
    Thesis, Civil and Environmental Engineering, University of
    California, Berkeley, (2002).
 
    Zhao, B. & Wu, J., "Modelling particle deposition from fully
    developed flow in ventilation duct", J. Atmospheric
    Environment, Vol.40, p457-466, (2006).
 
    Chen, F.Z. & Lai, A.C.K, "An Eulerian model for particle
    deposition under electrostatic and turbulent conditions",
    J.Aerosol Science, Vol.35, p47-62, (2004).
 
  save1end
 ************************************************************
  Group 2. Transience
 STEADY = T
 ************************************************************
  Groups 3, 4, 5  Grid Information
    * Overall number of cells, RSET(M,NX,NY,NZ,tolerance)
 RSET(M,60,30,30)
 ************************************************************
  Group 6. Body-Fitted coordinates
 ************************************************************
  Group 7. Variables: STOREd,SOLVEd,NAMEd
    * Non-default variable names
 NAME(106)=ENUN ;NAME(107)=DI5
 NAME(108)=DI4 ;NAME(109)=DI3
 NAME(110)=DI2 ;NAME(111)=VP5
 NAME(112)=TP5 ;NAME(113)=VP4
 NAME(114)=TP4 ;NAME(115)=VP3
 NAME(116)=TP3 ;NAME(117)=VP2
 NAME(118)=TP2 ;NAME(119)=VS5
 NAME(120)=TR5 ;NAME(121)=VD5
 NAME(122)=DEP5 ;NAME(123)=VS4
 NAME(124)=TR4 ;NAME(125)=VD4
 NAME(126)=DEP4 ;NAME(127)=VS3
 NAME(128)=TR3 ;NAME(129)=VP1
 NAME(130)=TP1 ;NAME(131)=DI1
 NAME(132)=VS1 ;NAME(133)=TR1
 NAME(134)=VD1 ;NAME(135)=VD3
 NAME(136)=VSTR ;NAME(137)=DEP1
 NAME(138)=DEP3 ;NAME(139)=VS2
 NAME(140)=ENUL ;NAME(141)=TR2
 NAME(142)=VD2 ;NAME(143)=DEP2
 NAME(145)=YPLS ;NAME(146)=STRS
 NAME(147)=EPKE ;NAME(148)=DEN1
 NAME(149)=EL1 ;NAME(150)=ENUT
    * Solved variables list
 SOLVE(P1,U1,V1,W1,C6,C7,C8,C9)
 SOLVE(C10)
    * Stored variables list
 STORE(ENUT,EL1,DEN1,EPKE,STRS,YPLS,DEP2,VD2)
 STORE(TR2,ENUL,VS2,DEP3,DEP1,VSTR,VD3,VD1)
 STORE(TR1,VS1,DI1,TP1,VP1,TR3,VS3,DEP4)
 STORE(VD4,TR4,VS4,DEP5,VD5,TR5,VS5,TP2)
 STORE(VP2,TP3,VP3,TP4,VP4,TP5,VP5,DI2)
 STORE(DI3,DI4,DI5,ENUN)
    * Additional solver options
 SOLUTN(P1,Y,Y,Y,N,N,Y)
 SOLUTN(C6,Y,Y,Y,N,N,Y)
 SOLUTN(C7,Y,Y,Y,N,N,Y)
 SOLUTN(C8,Y,Y,Y,N,N,Y)
 SOLUTN(C9,Y,Y,Y,N,N,Y)
 SOLUTN(C10,Y,Y,Y,N,N,Y)
 TURMOD(KEMODL)
 
 ************************************************************
  Echo save-block settings for Group  7
  save7begin
(stored of ENUN is ENUT/(0.152*0.43))
  save7end
 ************************************************************
  Group 8. Terms & Devices
 NEWRH1 = T
 NEWENL = T
 ************************************************************
  Group 9. Properties
 PRESS0 =1.01325E+05 ;TEMP0 =273.
    * Domain material index is   2 signifying:
    * Air using Ideal Gas Law, STP
 SETPRPS(1, 2)
 ENUL = GRND6
 ENULA =1.46E-06 ;ENULB =110.
 ENULC =8.0974E-11
 TMP1 = GRND1
 TMP1A =22. ;TMP1B =0.
 TMP1C =0.
 DRH1DP = GRND5
 DVO1DT =3.33E-03
 PRT(EP)=1.314
 ************************************************************
  Group 10.Inter-Phase Transfer Processes
 ************************************************************
  Group 11.Initialise Var/Porosity Fields
 FIINIT(P1)=0. ;FIINIT(U1)=2.2
 FIINIT(C6)=0. ;FIINIT(C7)=0.
 FIINIT(C8)=0. ;FIINIT(C9)=0.
 FIINIT(C10)=0.
   No PATCHes used for this Group
 
 
 INIADD = F
 ************************************************************
  Group 12. Convection and diffusion adjustments
   No PATCHes used for this Group
 ************************************************************
  Group 13. Boundary & Special Sources
 
 PATCH(DFLUX, CELL, 0, 0, 0, 0, 0, 0, 1, 1)
 COVAL(DFLUX, C6, GRND4, GRND4)
 COVAL(DFLUX, C7, GRND4, GRND4)
 COVAL(DFLUX, C8, GRND4, GRND4)
 COVAL(DFLUX, C9, GRND4, GRND4)
 COVAL(DFLUX, C10, GRND4, GRND4)
 
 BUOYA =0. ; BUOYB =0.
 BUOYC =-9.81
 EGWF = T
 ************************************************************
  Echo save-block settings for Group 13
  save13begin
  ** estimate for turbulent inlet intensity
      for fully developed duct flow
real(din,win,tint,kein,epin,mixl,fric,temk)
real(reyn,ust,tvis,tvisn,enugas,rhogas)
temk=22.0+temp0
din=0.152
win=2.2
rhogas=press0/(287.0*temk)
rhogas
enugas=1.46e-6*temk**1.5/(110.+temk)/rhogas
enugas
reyn=win*din/enugas
reyn
fric=1./(1.82*log10(reyn)-1.64)**2
fric
ust=win*(fric/8.)**0.5
ust
kein=fric*win*win/4.
mixl=0.09*0.5*din
mixl
epin=0.1643*kein**1.5/mixl
kein
epin
tint=kein**0.5/win
tint
tvis=0.09*kein*kein/epin
tvis
tvisn=tvis/(ust*din)
tvisn
 
real(vslip,rho_p,dpart,grava,vdep,rey,tpart,tpl)
 
integer(npart);npart=5
 
    ** Particle diameter & density
array(pdia,real,npart)
array(pden,real,npart)
 
pdia(1)=1.0;pdia(2)=2.8;pdia(3)=5.2
pdia(4)=9.1;pdia(5)=16.0
 
pden(1)=1400.0;pden(2)=1200.0;pden(3)=1200.0
pden(4)=1000.0;pden(5)=1000.0
 
do ii=1,npart
dpart=pdia(ii)*1.e-6
rho_p=pden(ii)
 
   ** Stokes-flow slip velocity
grava=9.81
vslip=rho_p*dpart*dpart*grava/(18.*rhogas*enugas)
rey=vslip*dpart/enugas
ii
vdep=vslip
vslip
rey
tpart=rho_p*dpart**2/(18.*rhogas*enugas)
tpart
tpl=tpart*ust*ust/enugas
tpl
enddo
 
    ** print to the "inforout" file the floor deposition
       results in the fully-developed flow region.
integer(ixp,iyp)
ixp=nx
iyp=ny/2
(make1 vs_nx is 0)
(store1 vs_nx is VSTR[:ixp:,:iyp:,1])
(print V* is vs_nx)
(make1 yp_nx is 0)
(store1 yp_nx is YPLS[:ixp:,:iyp:,1])
(print y+ is yp_nx)
 
do jj=1,npart
(make1 tr_:jj: is 0)
(store1 tr_:jj: is TR:jj:[:ixp:,:iyp:,1])
(print Tr_:jj: is tr_:jj:)
(make1 vd_:jj: is 0)
(store1 vd_:jj: is VD:jj:[:ixp:,:iyp:,1])
(print Vd_:jj: is vd_:jj:)
(make1 tp_:jj: is 0)
(store1 tp_:jj: is TP:jj:[:ixp:,:iyp:,1])
(print Tr+_:jj: is tp_:jj:)
(make1 vp_:jj: is 0)
(store1 vp_:jj: is VP:jj:[:ixp:,:iyp:,1])
(print Vd+_:jj: is vp_:jj:)
enddo
 
  save13end
 ************************************************************
  Group 14. Downstream Pressure For PARAB
 ************************************************************
  Group 15. Terminate Sweeps
 LSWEEP = 500
 RESFAC =1.0E-05
 ************************************************************
  Group 16. Terminate Iterations
 LITER(P1)=200
 ************************************************************
  Group 17. Relaxation
 RELAX(P1 ,LINRLX,1. )
 RELAX(KE ,LINRLX,0.5 )
 RELAX(EP ,LINRLX,0.5 )
 RELAX(C6 ,LINRLX,0.5 )
 RELAX(C7 ,LINRLX,0.5 )
 RELAX(C8 ,LINRLX,0.5 )
 RELAX(C9 ,LINRLX,0.5 )
 RELAX(C10 ,LINRLX,0.5 )
 KELIN = 3
 ************************************************************
  Group 18. Limits
 VARMAX(C6)=1. ;VARMIN(C6)=0.
 VARMAX(C7)=1. ;VARMIN(C7)=0.
 VARMAX(C8)=1. ;VARMIN(C8)=0.
 VARMAX(C9)=1. ;VARMIN(C9)=0.
 VARMAX(C10)=1. ;VARMIN(C10)=0.
 ************************************************************
  Group 19. EARTH Calls To GROUND Station
 NAMGRD =FLAR
 GENK = T
 PARSOL = F
 ISG62 = 0
 SPEDAT(SET,DFLUX,DFMODL,L,T)
 SPEDAT(SET,OUTPUT,NOFIELD,L,T)
 SPEDAT(SET,DFLUX,DEPOMOD,I,3)
 SPEDAT(SET,DFLUX,DENP1,R,1400.)
 SPEDAT(SET,DFLUX,DIAP1,R,1.0E-06)
 SPEDAT(SET,DFLUX,DENP2,R,1200.)
 SPEDAT(SET,DFLUX,DIAP2,R,2.8E-06)
 SPEDAT(SET,DFLUX,DENP3,R,1200.)
 SPEDAT(SET,DFLUX,DIAP3,R,5.2E-06)
 SPEDAT(SET,DFLUX,DENP4,R,1000.)
 SPEDAT(SET,DFLUX,DIAP4,R,9.1E-06)
 SPEDAT(SET,DFLUX,DENP5,R,1000.)
 SPEDAT(SET,DFLUX,DIAP5,R,1.6E-05)
 SPEDAT(SET,GXMONI,PLOTALL,L,T)
 ************************************************************
  Group 20. Preliminary Printout
 DISTIL = T ;NULLPR = F
 NDST = 0
 DSTTOL =1.0E-02
 EX(P1)=0.7165 ;EX(U1)=2.2
 EX(V1)=1.884E-03 ;EX(W1)=1.884E-03
 EX(KE)=0.02411 ;EX(EP)=0.3848
 EX(C6)=0.9999 ;EX(C7)=0.9996
 EX(C8)=0.999 ;EX(C9)=0.9978
 EX(C10)=0.9584 ;EX(ENUN)=5.35E-03
 EX(DI5)=1.769E+04 ;EX(DI4)=2.922E+04
 EX(DI3)=2.924E+04 ;EX(DI2)=2.269E+04
 EX(VP5)=2.137E-03 ;EX(TP5)=0.101
 EX(VP4)=6.969E-04 ;EX(TP4)=0.03294
 EX(VP3)=2.77E-04 ;EX(TP3)=0.01308
 EX(VP2)=8.271E-05 ;EX(TP2)=3.894E-03
 EX(VS5)=7.688E-03 ;EX(TR5)=7.837E-04
 EX(VD5)=2.569E-04 ;EX(DEP5)=3.063E-04
 EX(VS4)=2.506E-03 ;EX(TR4)=2.555E-04
 EX(VD4)=8.358E-05 ;EX(DEP4)=9.969E-05
 EX(VS3)=9.955E-04 ;EX(TR3)=1.015E-04
 EX(VP1)=1.416E-05 ;EX(TP1)=6.379E-04
 EX(DI1)=1.241E+04 ;EX(VS1)=4.816E-05
 EX(TR1)=4.909E-06 ;EX(VD1)=1.7E-06
 EX(VD3)=3.33E-05 ;EX(VSTR)=0.01587
 EX(DEP1)=2.028E-06 ;EX(DEP3)=3.972E-05
 EX(VS2)=2.963E-04 ;EX(ENUL)=1.526E-05
 EX(TR2)=3.02E-05 ;EX(VD2)=9.921E-06
 EX(DEP2)=1.183E-05 ;EX(YPLS)=2.619
 EX(STRS)=1.98E-03 ;EX(EPKE)=9.658
 EX(DEN1)=1.181 ;EX(EL1)=5.216E-03
 EX(ENUT)=3.497E-04
 EX(DI5 )=3.617E+03
 EX(DI4 )=1.077E+04
 EX(DI3 )=1.038E+10
 EX(DI2 )=1.253E+11
 EX(VP5 )=3.239E-03
 EX(VP4 )=8.367E-04
 EX(VP3 )=2.998E-04
 EX(VP2 )=8.493E-05
 EX(VD5 )=3.971E-04
 EX(DEP5)=3.938E-04
 EX(VD4 )=1.013E-04
 EX(DEP4)=1.177E-04
 EX(DI1 )=3.808E+21
 EX(VD3 )=3.609E-05
 EX(DEP3)=4.298E-05
 EX(VD2 )=1.019E-05
 EX(DEP2)=1.219E-05
 ************************************************************
  Group 21. Print-out of Variables
 OUTPUT(YPLS,Y,N,Y,N,Y,Y)
 OUTPUT(STRS,Y,N,Y,N,Y,Y)
 ************************************************************
  Group 22. Monitor Print-Out
 IXMON = 42 ;IYMON = 15 ;IZMON = 1
 NPRMON = 100000
 NPRMNT = 1
 TSTSWP = -1
 ************************************************************
  Group 23.Field Print-Out & Plot Control
 NPRINT = 100000
 XZPR = T
 ISWPRF = 1 ;ISWPRL = 100000
   No PATCHes used for this Group
 ************************************************************
  Group 24. Dumps For Restarts
 
 GVIEW(P,0.636841,-0.630895,0.443176)
 GVIEW(UP,-0.182221,0.435361,0.881621)
 GVIEW(WINDOW,1022,726)
 GVIEW(DEPTH,3.0E+04)
 GVIEW(VDIS,1.506728)
 GVIEW(CENTRE,1.52,0.076,0.076)
 
> DOM,    SIZE,        3.040000E+00, 1.520000E-01, 1.520000E-01
> DOM,    MONIT,       2.102666E+00, 7.346665E-02, 2.533333E-03
> DOM,    SCALE,       1.000000E+00, 1.000000E+00, 1.000000E+00
> DOM,    INCREMENT,   1.000000E-02, 1.000000E-02, 1.000000E-02
> GRID,   RSET_X_1,     60, 1.000000E+00
> GRID,   RSET_Y_1,    -30, 1.000000E+00,G
> GRID,   RSET_Z_1,     30, 1.000000E+00,G
> DOM,    T_AMBIENT,   2.200000E+01
> DOM,    INI_AMB,    YES
> DOM,    INI_BUOY,   YES
 
> OBJ,    NAME,        INL
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ,    SIZE,        0.000000E+00, TO_END,       TO_END
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    cube3t
> OBJ,    VISIBLE,     NO
> OBJ,    TYPE,        INLET
> OBJ,    PRESSURE,     P_AMBIENT
> OBJ,    VELOCITY,    2.2 ,0. ,0.
> OBJ,    INLET_C6,    1.
> OBJ,    INLET_C7,    1.
> OBJ,    INLET_C8,    1.
> OBJ,    INLET_C9,    1.
> OBJ,    INLET_C10,   1.
> OBJ,    TURB-INTENS, 6.8
 
> OBJ,    NAME,        OUTL
> OBJ,    POSITION,    AT_END,       0.000000E+00, 0.000000E+00
> OBJ,    SIZE,        0.000000E+00, TO_END,       TO_END
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    cube12t
> OBJ,    VISIBLE,     NO
> OBJ,    TYPE,        OPENING
> OBJ,    PRESSURE,     P_AMBIENT
> OBJ,    COEFFICIENT, 1000.
> OBJ,    TURBULENCE,  SAME , SAME
 
> OBJ,    NAME,        HWAL
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, AT_END
> OBJ,    SIZE,        TO_END,       TO_END,       0.000000E+00
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    cube11
> OBJ,    VISIBLE,     NO
> OBJ,    TYPE,        PLATE
 
> OBJ,    NAME,        SWAL
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ,    SIZE,        TO_END,       0.000000E+00, TO_END
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    cube11
> OBJ,    VISIBLE,     NO
> OBJ,    TYPE,        PLATE
 
> OBJ,    NAME,        NWAL
> OBJ,    POSITION,    0.000000E+00, AT_END,       0.000000E+00
> OBJ,    SIZE,        TO_END,       0.000000E+00, TO_END
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    cube11
> OBJ,    VISIBLE,     NO
> OBJ,    TYPE,        PLATE
 
> OBJ,    NAME,        LWAL
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ,    SIZE,        TO_END,       TO_END,       0.000000E+00
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    cube11
> OBJ,    VISIBLE,     NO
> OBJ,    TYPE,        PLATE
STOP