TALK=T;RUN( 1, 1)
************************************************************
Q1 created by VDI menu, Version 2018, Date 25/01/18
CPVNAM=VDI; SPPNAM=FLAIR
************************************************************
Echo DISPLAY / USE settings
DISPLAY
Library Case I405: Deposition, downpipe, Re=9.894E3
---------------------------------------------------
The case considered is 2d steady, isothermal, turbulent flow
of air and particles down a pipe with particle deposition on
the wall of the pipe. The Eulerian drift flux model is used to
simulate particle transport with deposition by means of the
3-layer model of Bin & Zhou(2006), which accounts for deposition
via gravity, Brownian and turbulent diffusion, and turbophoresis.
This case has been studied experimentally by Liu & Agrawal(1974),
who for fully-developed flow, measured deposition rates of particles
to the walls of the pipe with nominal sizes ranging from 1.4 to 21
microns in a 0.0127m pipe at air speeds of 11.85m/s and 60 m/s,
corresponding to Reynolds numbers of 9,894 & 50,000, respectively.
The present Q1 file considers the air speed of 11.85 m/s at a
temperature of 22degC so as to replicate the experimental deposition
of 14 different particles sizes onto the pipe wall in the
fully-developed region of the flow.
ENDDIS
PHOTON USE
p
up -z
view y
con C6 x 1 fi;.1;pa
vec x 1;pa
ENDUSE
************************************************************
IRUNN = 1 ;LIBREF = 0
************************************************************
Group 1. Run Title
TEXT(I405: Deposition, downpipe, Re=9.894E3 )
************************************************************
Echo save-block settings for Group 1
save1begin
Eighteen different aerosol particle sizes with a density of
920 kg/m^3 enter a vertical down pipe duct in an air stream of
11.85 m/s at 22degC. The pipe is 80 diameters long, at which
location the flow is fully developed. In the simulations the
particle concentration is normalized by the inlet concentration.
The case has been studied numerically by Zhao and Wu (2006),
and experimentally by Liu & Agrawal(1974). The particle
characteristics are listed below, and cover the 14 experimental
sizes (runs 1 to 16), plus 4 additional smaller sizes( runs a
to d) so as to cover the diffusion-dominated deposition regime.
Run diameter Tr+ Vd+ Tr+ Vd+
(microns) measured predicted
a 0.05 - - 1.24E-03 7.507E-05
b 0.3 - - 1.39E-02 2.378E-05
c 0.75 - - 6.77E-02 1.493E-05
d 1.2 - - 0.162 1.363E-05
1 1.4 0.21 6.0E-5 0.216 1.391E-05
2 2.5 0.64 2.6E-4 0.657 2.433E-05
3 2.6 0.7 3.4E-4 0.708 2.640E-05
4 3.2 1.1 8.1E-4 1.061 4.699E-05
5 3.6 1.4 1.4E-3 1.335 7.408E-05
6 3.7 1.5 1.5E-3 1.409 8.365E-05
7 5.3 3.0 3.0E-3 2.854 8.151E-04
8 7.2 5.5 9.7E-3 5.224 0.022
10 8.1 6.9 3.1E-2 6.600 0.087
11 10.0 10.0 5.2E-2 10.014 0.195
12 10.1 10.7 9.5E-2 10.214 0.196
13 14.0 20.6 0.15 19.536 0.238
15 16.8 29.6 0.15 28.077 0.271
16 21.0 46.3 0.15 43.785 0.311
where Tr+ (=Tr*Ust^2/enul_g) is the dimensional particle relaxation
time, Vd+ (=Vd/Ust)is the dimensionless deposition velocity, enul_g
is the kinematic laminar viscosity, Ust (=0.73m/s) is the friction
velocity, Tr (=rho_p*diam_p^2*C/(18.*rho_g*enul_g) is the particle
relaxation time and C is the Cunningham slip coefficient.
References
----------.
Zhao, B. & Wu, J., "Modelling particle deposition from fully
developed flow in ventilation duct", J. Atmospheric
Environment, Vol.40, p457-466, (2006).
Liu, B.Y.H.,& Agarwal,J.K.(1974). "Experimental observation
of aerosol deposition in turbulent flow", Journal of Aerosol
Science, 5, Vol.5, p145-155, (1974).
Zhao, B. & Wu, J., "Particle deposition in indoor
environments: Analysis of influencing factors", Journal of
Hazardous Materials 147, p439-448, (2007).
Lai, C.K., Nazaroff, W.W., "Modeling indoor particle
deposition from turbulent flow onto smooth surfaces", Journal
of Aerosol Science 31, p463-476, (2000)
save1end
************************************************************
Group 2. Transience
STEADY = T
************************************************************
Groups 3, 4, 5 Grid Information
* Overall number of cells, RSET(M,NX,NY,NZ,tolerance)
RSET(M,1,10,80)
* Cylindrical-polar grid
CARTES=F
************************************************************
Group 6. Body-Fitted coordinates
************************************************************
Group 7. Variables: STOREd,SOLVEd,NAMEd
* Non-default variable names
NAME(46)=VP18 ;NAME(47)=TP18
NAME(49)=VP17 ;NAME(50)=TP17
NAME(54)=VP16 ;NAME(55)=TP16
NAME(59)=VP15 ;NAME(60)=TP15
NAME(64)=VP14 ;NAME(65)=TP14
NAME(69)=VP13 ;NAME(70)=TP13
NAME(72)=TR13 ;NAME(74)=VP12
NAME(75)=TP12 ;NAME(79)=VP11
NAME(80)=TP11 ;NAME(84)=VP10
NAME(85)=TP10 ;NAME(89)=VP9
NAME(90)=TP9 ;NAME(94)=VP8
NAME(95)=TP8 ;NAME(96)=VD8
NAME(97)=TR8 ;NAME(99)=VP7
NAME(100)=TP7 ;NAME(104)=VP6
NAME(105)=TP6 ;NAME(108)=VP5
NAME(109)=TP5 ;NAME(110)=VP4
NAME(111)=TP4 ;NAME(112)=VP3
NAME(113)=TP3 ;NAME(114)=VP2
NAME(115)=TP2 ;NAME(116)=VP1
NAME(117)=TP1 ;NAME(121)=DEP5
NAME(125)=DEP4 ;NAME(129)=DEP3
NAME(133)=DEP2 ;NAME(137)=VSTR
NAME(140)=DEP1 ;NAME(144)=ENUL
NAME(145)=YPLS ;NAME(146)=STRS
NAME(147)=EPKE ;NAME(148)=DEN1
NAME(149)=EL1 ;NAME(150)=ENUT
* Solved variables list
SOLVE(P1,V1,W1,C6,C7,C8,C9,C10)
SOLVE(C11,C12,C13,C14,C15,C16,C17,C18)
SOLVE(C19,C20,C21,C22,C23)
* Stored variables list
STORE(ENUT,EL1,DEN1,EPKE,STRS,YPLS,ENUL,DEP1)
STORE(VSTR,DEP2,DEP3,DEP4,DEP5,TP1,VP1,TP2)
STORE(VP2,TP3,VP3,TP4,VP4,TP5,VP5,TP6)
STORE(VP6,TP7,VP7,TR8,VD8,TP8,VP8,TP9)
STORE(VP9,TP10,VP10,TP11,VP11,TP12,VP12,TR13)
STORE(TP13,VP13,TP14,VP14,TP15,VP15,TP16,VP16)
STORE(TP17,VP17,TP18,VP18)
* Additional solver options
SOLUTN(P1,Y,Y,Y,N,N,Y)
SOLUTN(C6,Y,Y,Y,N,N,Y)
SOLUTN(C7,Y,Y,Y,N,N,Y)
SOLUTN(C8,Y,Y,Y,N,N,Y)
SOLUTN(C9,Y,Y,Y,N,N,Y)
SOLUTN(C10,Y,Y,Y,N,N,Y)
SOLUTN(C11,Y,Y,Y,N,N,Y)
SOLUTN(C12,Y,Y,Y,N,N,Y)
SOLUTN(C13,Y,Y,Y,N,N,Y)
SOLUTN(C14,Y,Y,Y,N,N,Y)
SOLUTN(C15,Y,Y,Y,N,N,Y)
SOLUTN(C16,Y,Y,Y,N,N,Y)
SOLUTN(C17,Y,Y,Y,N,N,Y)
SOLUTN(C18,Y,Y,Y,N,N,Y)
SOLUTN(C19,Y,Y,Y,N,N,Y)
SOLUTN(C20,Y,Y,Y,N,N,Y)
SOLUTN(C21,Y,Y,Y,N,N,Y)
SOLUTN(C22,Y,Y,Y,N,N,Y)
SOLUTN(C23,Y,Y,Y,N,N,Y)
TURMOD(KEMODL)
************************************************************
Echo save-block settings for Group 7
save7begin
save7end
************************************************************
Group 8. Terms & Devices
************************************************************
Group 9. Properties
PRESS0 =1.01325E+05 ;TEMP0 =273.
* Domain material index is 0 signifying:
* Air at 20 deg C, 1 atm, treated as incompressible
SETPRPS(1, 0)
RHO1 =1.198
ENUL =1.524E-05
TMP1 = GRND1
TMP1A =22. ;TMP1B =0.
TMP1C =0.
DVO1DT =3.41E-03
PRT(EP)=1.314
************************************************************
Group 10.Inter-Phase Transfer Processes
************************************************************
Group 11.Initialise Var/Porosity Fields
FIINIT(P1)=0. ;FIINIT(W1)=11.85
No PATCHes used for this Group
INIADD = F
************************************************************
Group 12. Convection and diffusion adjustments
No PATCHes used for this Group
************************************************************
Group 13. Boundary & Special Sources
PATCH(DFLUX, CELL, 0, 0, 0, 0, 0, 0, 1, 1)
COVAL(DFLUX, C6, GRND4, GRND4)
COVAL(DFLUX, C7, GRND4, GRND4)
COVAL(DFLUX, C8, GRND4, GRND4)
COVAL(DFLUX, C9, GRND4, GRND4)
COVAL(DFLUX, C10, GRND4, GRND4)
COVAL(DFLUX, C11, GRND4, GRND4)
COVAL(DFLUX, C12, GRND4, GRND4)
COVAL(DFLUX, C13, GRND4, GRND4)
COVAL(DFLUX, C14, GRND4, GRND4)
COVAL(DFLUX, C15, GRND4, GRND4)
COVAL(DFLUX, C16, GRND4, GRND4)
COVAL(DFLUX, C17, GRND4, GRND4)
COVAL(DFLUX, C18, GRND4, GRND4)
COVAL(DFLUX, C19, GRND4, GRND4)
COVAL(DFLUX, C20, GRND4, GRND4)
COVAL(DFLUX, C21, GRND4, GRND4)
COVAL(DFLUX, C22, GRND4, GRND4)
COVAL(DFLUX, C23, GRND4, GRND4)
BUOYA =0. ; BUOYB =0.
BUOYC =9.81
EGWF = T
************************************************************
Echo save-block settings for Group 13
save13begin
** estimate for turbulent inlet intensity
for fully developed duct flow
real(din,win,tint,kein,epin,mixl,fric,temk)
real(reyn,ust,tvis,tvisn,enugas,rhogas)
temk=22.0+temp0
din=0.0127
win=11.85
rhogas=press0/(287.0*temk)
rhogas
enugas=1.46e-6*temk**1.5/(110.+temk)/rhogas
enugas
reyn=win*din/enugas
reyn
fric=1./(1.82*log10(reyn)-1.64)**2
fric
ust=win*(fric/8.)**0.5
ust
kein=fric*win*win/4.
mixl=0.09*0.5*din
mixl
epin=0.1643*kein**1.5/mixl
kein
epin
tint=kein**0.5/win
tint
tvis=0.09*kein*kein/epin
tvis
tvisn=tvis/(ust*din)
tvisn
real(vslip,rho_p,dpart,grava,vdep,rey,tpart,tpl)
** no of phases set by menu limit
integer(npart);npart=5
** add more phases
integer(npext,nptot)
npext=13 ! no of extra phases above menu default of 5
nptot=npart+npext
nptot
** Particle diameter & density
array(pdia,real,nptot)
array(pden,real,nptot)
rho_p=920.
** additional 6 phases for full coverage
of diffusion-dominated regime
pdia(1)=0.05;pdia(2)=0.3;pdia(3)=0.75;pdia(4)=1.2
pdia(5)=1.4;pdia(6)=2.5;pdia(7)=2.6
pdia(8)=3.2;pdia(9)=3.6
do ii=1,nptot
+ pden(ii)=rho_p
enddo
pdia(10)=3.7;pdia(11)=5.3;pdia(12)=7.2;pdia(13)=8.1
pdia(14)=10.0;pdia(15)=10.1;pdia(16)=14.0
pdia(17)=16.8;pdia(18)=21.0
integer(kk)
kk=10
set densities & diameters of extra phases
DO ii=npart+1,nptot
+ kk=kk+1
+ SOLVE(C:kk:)
+ SOLUTN(C:kk:,y,y,y,p,p,p)
+ RELAX(C:kk:,FALSDT,10.0)
+ COVAL(DFLUX ,C:kk: , GRND4 , GRND4 )
+ spedat(set,dflux,diap:ii:,r,pdia(ii)*1.e-6)
+ spedat(set,dflux,denp:ii:,r,pden(ii))
+ store(tr:ii:)
+ store(vd:ii:)
+ store(tp:ii:)
+ store(vp:ii:)
+ store(vs:ii:)
ENDDO
do ii=1,nptot
dpart=pdia(ii)*1.e-6
rho_p=pden(ii)
** Stokes-flow slip velocity
grava=9.81
vslip=rho_p*dpart*dpart*grava/(18.*rhogas*enugas)
rey=vslip*dpart/enugas
ii
vdep=vslip
vslip
rey
tpart=rho_p*dpart**2/(18.*rhogas*enugas)
tpart
tpl=tpart*ust*ust/enugas
tpl
enddo
** print to the "inforout" file the wall deposition
results in the fully-developed flow region.
integer(izp)
izp=75
(make1 vs_ny is 0)
(store1 vs_ny is VSTR[1,NY,:izp:])
(print V* is vs_ny)
(make1 yp_ny is 0)
(store1 yp_ny is YPLS[1,NY,:izp:])
(print y+ is yp_ny)
do jj=1,nptot
(make1 tr_:jj: is 0)
(store1 tr_:jj: is TR:jj:[1,NY,:izp:,1])
(print Tr_:jj: is tr_:jj:)
(make1 vd_:jj: is 0)
(store1 vd_:jj: is VD:jj:[1,NY,:izp:])
(print Vd_:jj: is vd_:jj:)
(make1 tp_:jj: is 0)
(store1 tp_:jj: is TP:jj:[1,NY,:izp:])
(print Tr+_:jj: is tp_:jj:)
(make1 vp_:jj: is 0)
(store1 vp_:jj: is VP:jj:[1,NY,:izp:])
(print Vd+_:jj: is vp_:jj:)
enddo
save13end
************************************************************
Group 14. Downstream Pressure For PARAB
************************************************************
Group 15. Terminate Sweeps
LSWEEP = 140
RESFAC =1.0E-04
************************************************************
Group 16. Terminate Iterations
LITER(P1)=50
************************************************************
Group 17. Relaxation
RELAX(P1 ,LINRLX,1. )
RELAX(KE ,LINRLX,0.5 )
RELAX(EP ,LINRLX,0.5 )
RELAX(C6 ,FALSDT,10. )
RELAX(C11 ,FALSDT,10. )
RELAX(C12 ,FALSDT,10. )
RELAX(C13 ,FALSDT,10. )
RELAX(C14 ,FALSDT,10. )
RELAX(C15 ,FALSDT,10. )
RELAX(C16 ,FALSDT,10. )
RELAX(C17 ,FALSDT,10. )
RELAX(C18 ,FALSDT,10. )
RELAX(C19 ,FALSDT,10. )
RELAX(C20 ,FALSDT,10. )
RELAX(C21 ,FALSDT,10. )
RELAX(C22 ,FALSDT,10. )
RELAX(C23 ,FALSDT,10. )
KELIN = 3
************************************************************
Group 18. Limits
VARMAX(C6)=1. ;VARMIN(C6)=0.
************************************************************
Group 19. EARTH Calls To GROUND Station
NAMGRD =FLAR
GENK = T
PARSOL = F
ISG62 = 0
SPEDAT(SET,DFLUX,DIAP6,R,5.6)
SPEDAT(SET,DFLUX,DENP6,R,920.)
SPEDAT(SET,DFLUX,DIAP7,R,6.0E-06)
SPEDAT(SET,DFLUX,DENP7,R,920.)
SPEDAT(SET,DFLUX,DIAP8,R,7.8E-06)
SPEDAT(SET,DFLUX,DENP8,R,920.)
SPEDAT(SET,DFLUX,DIAP9,R,8.399999E-06)
SPEDAT(SET,DFLUX,DENP9,R,920.)
SPEDAT(SET,DFLUX,DIAP10,R,1.05E-05)
SPEDAT(SET,DFLUX,DENP10,R,920.)
SPEDAT(SET,DFLUX,DIAP11,R,1.4E-05)
SPEDAT(SET,DFLUX,DENP11,R,920.)
SPEDAT(SET,DFLUX,DIAP12,R,1.68E-05)
SPEDAT(SET,DFLUX,DENP12,R,920.)
SPEDAT(SET,DFLUX,DIAP13,R,2.1E-05)
SPEDAT(SET,DFLUX,DENP13,R,920.)
SPEDAT(SET,DFLUX,DIAP14,R,2.1E-05)
SPEDAT(SET,DFLUX,DENP14,R,920.)
SPEDAT(SET,DFLUX,DIAP15,R,1.0E-08)
SPEDAT(SET,DFLUX,DENP15,R,920.)
SPEDAT(SET,DFLUX,DIAP16,R,3.0E-07)
SPEDAT(SET,DFLUX,DENP16,R,920.)
SPEDAT(SET,DFLUX,DIAP17,R,1.2E-06)
SPEDAT(SET,DFLUX,DENP17,R,920.)
SPEDAT(SET,DFLUX,DIAP18,R,1.2E-06)
SPEDAT(SET,DFLUX,DENP18,R,920.)
SPEDAT(SET,DFLUX,DFMODL,L,T)
SPEDAT(SET,DFLUX,DEPOMOD,I,3)
SPEDAT(SET,DFLUX,DENP1,R,920.)
SPEDAT(SET,DFLUX,DIAP1,R,5.0E-08)
SPEDAT(SET,DFLUX,DENP2,R,920.)
SPEDAT(SET,DFLUX,DIAP2,R,3.0E-07)
SPEDAT(SET,DFLUX,DENP3,R,920.)
SPEDAT(SET,DFLUX,DIAP3,R,7.5E-07)
SPEDAT(SET,DFLUX,DENP4,R,920.)
SPEDAT(SET,DFLUX,DIAP4,R,1.2E-06)
SPEDAT(SET,DFLUX,DENP5,R,920.)
SPEDAT(SET,DFLUX,DIAP5,R,1.4E-06)
SPEDAT(SET,GXMONI,PLOTALL,L,T)
************************************************************
Group 20. Preliminary Printout
DISTIL = T ;NULLPR = F
NDST = 0
DSTTOL =1.0E-02
EX(P1)=102.099998 ;EX(V1)=2.702E-03
EX(W1)=13.17 ;EX(KE)=0.8443
EX(EP)=339.399994 ;EX(C6)=0.9999
EX(C7)=0.9998 ;EX(C8)=0.9998
EX(C9)=0.9996 ;EX(C10)=0.9993
EX(C11)=0.9992 ;EX(C12)=0.9916
EX(C13)=0.9996 ;EX(C14)=0.9993
EX(C15)=0.9992 ;EX(C16)=0.9916
EX(C17)=0.8103 ;EX(C18)=0.5956
EX(C19)=0.4797 ;EX(C20)=0.4788
EX(C21)=0.4527 ;EX(C22)=0.4378
EX(C23)=0.4238 ;EX(VP18)=0.03118
EX(TP18)=4.429 ;EX(VP17)=0.02722
EX(TP17)=2.84 ;EX(VP16)=0.02393
EX(TP16)=1.976 ;EX(VP15)=0.01967
EX(TP15)=1.033 ;EX(VP14)=0.01953
EX(TP14)=1.013 ;EX(VP13)=9.044E-03
EX(TP13)=0.6672 ;EX(TR13)=1.872E-04
EX(VP12)=2.487E-03 ;EX(TP12)=0.5285
EX(VP11)=8.919E-05 ;EX(TP11)=0.2887
EX(VP10)=8.692E-06 ;EX(TP10)=0.1425
EX(VP9)=7.68E-06 ;EX(TP9)=0.1351
EX(VP8)=4.832E-06 ;EX(TP8)=0.1073
EX(VD8)=3.572E-06 ;EX(TR8)=3.011E-05
EX(VP7)=2.688E-06 ;EX(TP7)=0.07166
EX(VP6)=2.474E-06 ;EX(TP6)=0.06641
EX(VP5)=1.398E-06 ;EX(TP5)=0.02185
EX(VP4)=1.368E-06 ;EX(TP4)=0.01633
EX(VP3)=1.496E-06 ;EX(TP3)=6.846E-03
EX(VP2)=2.379E-06 ;EX(TP2)=1.406E-03
EX(VP1)=7.507E-06 ;EX(TP1)=1.249E-04
EX(DEP5)=1.235E-06 ;EX(DEP4)=1.208E-06
EX(DEP3)=1.32E-06 ;EX(DEP2)=2.099E-06
EX(VSTR)=0.07367 ;EX(DEP1)=6.619E-06
EX(ENUL)=1.524E-05 ;EX(YPLS)=2.659
EX(STRS)=0.05432 ;EX(EPKE)=277.100006
EX(DEN1)=1.198 ;EX(EL1)=7.267E-04
EX(ENUT)=3.3E-04
************************************************************
Group 21. Print-out of Variables
************************************************************
Group 22. Monitor Print-Out
IXMON = 1 ;IYMON = 10 ;IZMON = 75
NPRMON = 100000
NPRMNT = 1
TSTSWP = -1
************************************************************
Group 23.Field Print-Out & Plot Control
NPRINT = 100000
ISWPRF = 1 ;ISWPRL = 100000
No PATCHes used for this Group
************************************************************
Group 24. Dumps For Restarts
GVIEW(P,1.,0.,0.)
GVIEW(UP,0.,0.,-1.)
GVIEW(NEARPLANE,1.524E-03)
GVIEW(VDIS,0.41468)
GVIEW(CENTRE,3.014993E-04,5.254888E-03,0.48186)
> DOM, SIZE, 1.000000E-01, 6.350000E-03, 1.020000E+00
> DOM, MONIT, 5.000000E-02, 5.799891E-03, 9.498749E-01
> DOM, SCALE, 1.000000E+01, 1.000000E+01, 1.000000E+00
> DOM, INCREMENT, 1.000000E-02, 1.000000E-02, 1.000000E-02
> GRID, AUTO, T F F
> GRID, RSET_X_1, 1, 1.000000E+00
> GRID, RSET_Y_1, 10, 1.150000E+00,G
> GRID, RSET_Z_1, 80, 1.000000E+00
> DOM, INI_AMB, YES
> DOM, INI_BUOY, YES
> OBJ, NAME, WALLN
> OBJ, POSITION, 0.000000E+00, AT_END, 0.000000E+00
> OBJ, SIZE, TO_END, 0.000000E+00, TO_END
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, polcu10
> OBJ, VISIBLE, NO
> OBJ, TYPE, PLATE
> OBJ, NAME, INL
> OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ, SIZE, TO_END, TO_END, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, polcu5t
> OBJ, TYPE, INLET
> OBJ, PRESSURE, P_AMBIENT
> OBJ, VELOCITY, 0. ,0. ,11.85
> OBJ, INLET_C6, 1.
> OBJ, INLET_C7, 1.
> OBJ, INLET_C8, 1.
> OBJ, INLET_C9, 1.
> OBJ, INLET_C10, 1.
> OBJ, INLET_C11, 1.
> OBJ, INLET_C12, 1.
> OBJ, INLET_C13, 1.
> OBJ, INLET_C14, 1.
> OBJ, INLET_C15, 1.
> OBJ, INLET_C16, 1.
> OBJ, INLET_C17, 1.
> OBJ, INLET_C18, 1.
> OBJ, INLET_C19, 1.
> OBJ, INLET_C20, 1.
> OBJ, INLET_C21, 1.
> OBJ, INLET_C22, 1.
> OBJ, INLET_C23, 1.
> OBJ, TURB-INTENS, 5.
> OBJ, NAME, OUT
> OBJ, POSITION, 0.000000E+00, 0.000000E+00, AT_END
> OBJ, SIZE, TO_END, TO_END, 0.000000E+00
> OBJ, DOMCLIP, NO
> OBJ, GEOMETRY, polcubet
> OBJ, TYPE, OPENING
> OBJ, PRESSURE, P_AMBIENT
> OBJ, COEFFICIENT, 1000.
> OBJ, TURBULENCE, SAME , SAME
STOP
kk=10
** set deposition boundary conditions
for additional aerosol phases
DO ii=npart+1,nptot
+ kk=kk+1
+ COVAL(PW1,C:kk:, GRND3 ,0. )
ENDDO