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Abstract 

 Calculations have been carried out using the "PHOENICS" for two-phase flow in a 

concentric annulus with a rotating inner cylinder. The flow in such system for the 

single-phase flow is well known as the Taylor-vortex flow. The two-phase Taylor-vortex flow 

has quite interesting characteristics in experiments. With increasing of the rotating inner 

cylinder, bubbles agglomerate and make spirals or rings owing to the Taylor-vortex. 

According to the flow visualization of a cross section in the annulus, the bubbles of spirals or 

rings locate at very close to the rotating inner cylinder and at out-flow region. Calculations 

carried out to confirm these characteristics and investigate in detail. 

 Two-phase Taylor-vortex flow was calculated in two dimensional cylindrical 

coordinate with IPSA method. The original k- and k- RNG models are used as the turbulent 

model. It is confirmed that the Taylor-vortex is obtained in this calculation by the vector of 

liquid phase. From the void fraction distribution, bubbles exist close to the inner cylinder and 

locate at out-flow region as same as the experimental results. The calculated results agree 

with the experimental results qualitatively but we do not obtain the quantitative agreements. 
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1. Introduction 

 The flow in a concentric annulus with a rotating inner cylinder for the single-phase 

flow is well known as the Taylor-vortex flow. Experiments in such system for the two-phase 

flow were carried out and found very interesting phenomena. With increasing of the rotating 

inner cylinder, bubbles agglomerate and make spirals or rings owing to the Taylor-vortex.  

According to the flow visualization of a cross section in the annulus, the bubbles of spirals or 

rings locate at very close to the rotating inner cylinder and at out-flow region. Calculations 

carried out to confirm these characteristics and investigate in detail.  

 

2. Description of phenomenon simulated 

Taylor first investigated the instability in the concentric annulus and found the 

Taylor-vortex, i.e. there appear pairs of counter-rotating toroidal vortices above a certain 

critical Taylor number[1]. This flow is very important for cooling of bearings in rotating 

machineries and/or heat and mass transfer in chemical reactors. Authors have investigated 
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Fig.1 Experimental apparatus 



two-phase flow in the Taylor-vortex flow experimentally[2]-[5]. The experimental apparatus 

used in the two-phase Taylor-vortex flow is shown in Fig.1. 

When the rotational speed of the inner cylinder was at relatively low level, the 

buoyancy effect of bubbles played a dominant role in the flow field, and then the dispersed 

bubbly flow appeared as shown in Fig.2. On the other hand, when the rotational speed was at 

high level, the vortex motion dominated the flow field, and ring and/or spirals consisted of 

small bubbles were formed as shown in Fig.3. To understand the flow structure in such 

two-phase Taylor-vortex flow, it is necessary to pay attention to each bubble behavior and the 

interaction with the Taylor-vortex. 

The water flow rates were QL= 0 - 1.6x10
-3

 m
3
/s, the air flow rates QG=0 - 3.86x10

-4
 

m
3
/s, and the rotational speeds of the inner cylinder n=0 - 800 rpm in the experiments. Then 

the respective axial volumetric fluxes were jL= 0 - 0.268 m/s and jG=0 - 0.0647 m/s. The 

tangential velocities of the inner cylinder were uT0=0 - 7.54 m/s. The corresponding Taylor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Bubbly flow  

 (jG=0.0163m/s, jL=0.067m/s, 

Ta=9.86x10
6
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Bubble-ring flow  

 (jG=0.0163m/s, jL=0.067m/s, 

Ta=6.31x10
8
) 



number, which was defined by 
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where R1 was the radius of the inner cylinder, 1  was the angular velocity of the inner 

cylinder, d was the gap of the concentric annulus and   was the kinematic viscosity of 

water, was in the range Ta = 0 - 6.31x10
8
. 

The theoretical critical Taylor number without an axial flow, at which the Couette 

flow instability occurs, is 1920. Although this critical Taylor number increased, in general, 

with the increase in the axial Reynolds number, the Taylor number was far beyond this 

critical value, i.e. Ta = 2.47x10
6
 even at the lower limit of the rotation n=50 rpm. 

The Rossby number, Ro, which is the ratio of the centrifugal force to the inertial force, 

also represents important characteristics in the Taylor-vortex flow with an axial flow. In these 

experiments, Rossby number defined by 
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where R  was the rotational Reynolds number and Re was the axial Reynolds number, was 

greater than unity. Then the centrifugal force was larger than the inertial force in the present 

range of experiment. That is, the centrifugal force caused by the rotation of the inner cylinder 

is dominant factor relative to the inertial force caused by the axial flow. 



  Fig. 4  Flow visualization of two-phase Taylor vortex flow(Ta=6.31x10
8
) 

 

Figure 4 shows the flow visualization of the two-phase Taylor-vortex flow at 

Ta=6.31x10
8
. The schematic diagram at the right side is drawn based on the visual images of 

the photograph and VTR. It can be seen from the photograph and VTR images that the 

bubble-rings exist close to the inner cylinder. The visual image also indicates that the 

bubble-rings are located at the out-flow regions as shown in the diagram.  

In order to confirm the above discussion, the void fraction was measured at various 

radial positions by using a conductance probe, and the results are shown in Fig.5. When a 

bubble attacked the conductance probe, the signal indicated a peak. The zero-line in Fig.5 

corresponds to the liquid phase. At the radial position r=92mm apart 2mm from the inner 

cylinder, there are many bubbles, i.e. the void fraction is high. On the other hand, there is no 
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bubble at r=98mm close to the outer cylinder. Namely, the void fraction decreases along with 

the traverse in the radial direction, i.e. void fraction has the inner wall-peak distribution. 

 

3. Numerical Method 

Two-phase Taylor-vortex flow is calculated in two dimensional cylindrical coordinate 

with IPSA method. The original k- and k- RNG models are used as the turbulent model. 

The mesh region containing fluid is composed of 10 cells in the r direction, labeled 

with the index y, and 400 cells in z direction, labeled with the index z shown in Fig.6.  

The boundary condition at the inner cylinder was set to the tangential velocity of the 

inner cylinder and at the outer cylinder was set to the no-slip condition. The boundary 

condition at the upper and bottom boundaries were continuative out- and in-flow conditions, 

respectively.  

Calculation was conducted using same geometrical configurations as the experiment 

[2]. The Taylor number was in the range Ta=0 - 6.31x10
8
. The calculated conditions are listed 
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Fig. 5 Void fraction 

(jG=0.0214m/s, jL=0.0628m/s, Ta=6.31x10
8
) 



in Table 1. 

The two-phase flow comes into the annulus from the bottom and goes out at the top. 

If the outlet at the top sets to the pressure boundary condition, p=0 as the normal outlet 

boundary condition, the two-phase flow does not flow out at the top because of the pressure 

distribution of the annulus owing to the rotation. Then, the outlet boundary condition at the 
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Fig. 6  Physical model 

                Table 1  Calculated conditions 

Radius of Inner Cylinder 0.09 [m] 

Radius of Outer Cylinder 0.10 [m] 

Taylor number 0 - 6.31×10
8
 

Density of liquid 998.2 [kg/m
3
] 

Density of gas 1.205 [kg/m
3
] 

Inlet jT=0.0833 [m/s], 05.0   

Bubble diameter 1.0×10
-3

 [m] 

Turbulence model k- , k- RNG 

 



top is set to the minus value of the inlet boundary condition at the bottom. Using these 

boundary conditions, the nett sources of R1 and R2 balance at the top and the bottom. The 

total volumetric flux, jT and the void fraction, , which is same with the volumetric 

fraction,   in the two-phase homogeneous model, are set at the inlet boundary condition of 

the bottom. 

 

4. Results and Discussion 

Before the discussion of the two-phase flow, the existence of the Taylor-vortex in the 

liquid single-phase flow was confirmed. 

Figure 7 shows the results of the void fraction distribution and vectors of liquid phase 

in the case of k-   RNG model. It can be seen that the Taylor-vortex is also obtained in this 

calculation from the vectors of liquid phase. And from the void distribution, bubbles which 

correspond to red region exist close to the inner cylinder and locate at out-flow region. These 

features are same with the experimental results as mentioned above. In the case of original 

k-   model, almost same results obtained. Therefore there is no remarkable difference 

between original k-   model and k-   RNG model in this calculation.  

     

Fig. 7  Void fraction and vectors of liquid phase 



Owing to the rotation of the inner cylinder, the annulus has the interesting pressure 

distribution. The pressure increases with increasing the radial position and its distribution is 

wavy. In other words, the pressure close to the outer cylinder is higher than that close to the 

inner cylinder. It has the positive higher region where the flow is the out-flow, i.e. the flow 

from the inner cylinder to the outer one, close to the outer cylinder. On the other hand, it has 

the lower region close to the inner cylinder. The negative pressure region corresponds to the 

high void fraction region. Therefore the bubbles are trapped in the negative pressure region.  

 The calculation results agree with the experimental results qualitatively but do not 

have the quantitative agreement. For example, bubbles locate in the wide range and liquid 

velocity was calculated largely where it must be zero.  

These errors might come from numerical errors during the iteration. Though the void 

fraction must be zero in practice, the calculated void fraction has the very small finite value. 

Therefore, the liquid velocity was calculated largely. Figure 9 shows the modified liquid 

 

Fig. 8  Pressure distribution, void distribution and velocity vector 



velocity, the product of the original liquid velocity and the void fraction. The modified liquid 

velocity close to the inner cylinder becomes very small and seems to be reasonable.  

 

5.Conclusions 

Calculations have been carried out for the two-phase Taylor-vortex flow in the 

concentric annulus with the rotating inner cylinder. The calculation results agreed with the 

experimental results qualitatively that the bubbles exist at the out-flow region close to the 

inner cylinder. The pressure distribution in the two-phase Taylor-vortex flow is deeply related 

to the void fraction distribution. 

 

 

 

 

Fig. 9  Modified liquid velocity 
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