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The Extension of PHOENICS VOF to Three Phases 

1.Introduction 

 

This article reports on the extension of the existing PHOENICS VOF (volume of fluid) option to 

simulate three phase flows, such as those encountered in applications involving three different 

immiscible fluids. Examples include systems involving combinations of liquids and gases with 

differing densities, like those found in the water/oil/air interfaces of an oilfield separator and the 

liquid-steel/liquid-slag/gas interfaces of a gas-stirred metallurgical ladle. The extension to three 

fluids involves the solution of a conservation for an additional colour (or indicator) function, C3, 

to represent the third phase; and a modification of the surface-tension force in the mixture 

momentum equation to handle the three distinct fluids.  

2.Theoretical Considerations 

 

The transport equation for C3 has the same form as the existing colour function C1 used in two-

phase VOF simulations, i.e.: 

𝜕𝐶3

𝜕𝑡
+ ∇ ∙ 𝑉𝐶3 = 0         (1) 

 

The option exists in PHOENICS to solve this equation in conservative or in non-conservative form, 

depending on the physical problem. The following algebraic equation enforces volume continuity 

and links the two colour functions:     ∑ 𝐶𝑛 = 13
𝑛=1  , where Cn is the colour function of phase n.  

 

The physical properties of the resulting mixture are computed under the above constraint by 

using equations of the form:  𝜙 = ∑ 𝐶𝑛
3
𝑛=1 𝜙𝑛 , where 𝜙 denotes the density, kinematic viscosity, 

specific heat capacity, thermal conductivity and volumetric expansion coefficient 

3. Surface Tension Effects 

 

The PHOENICS two-phase VOF method uses the standard continuous surface force (CSF) 

approach of Brackbill et al (1992) to introduce surface-tension forces into the momentum 

equations in form of an equivalent body force, which in case of a two-phase system, takes the 

following form: 𝐟𝑐𝑎𝑝 = 𝜎𝜅𝑖𝛿𝐧𝑖, where 𝜎 is interfacial tension, 𝐧𝑖 = −∇𝐶𝑖/|∇𝐶𝑖|  is unit normal vector 

at the interface pointing out of the 𝑖-phase, with 𝐶𝑖 the colour function of the 𝑖-phase,  𝛿 = |∇𝐶𝑖| 

is the Dirac delta function centred at the interface and 𝜅𝑖 = −(∇ ⋅ 𝐧𝑖) is the interface curvature.  

The drawback of the CSF approach is that for different densities of adjacent phases, the capillary 

force introduced into the momentum equations produces an unsymmetrical distribution of the 

acceleration field relative to the interface location. For example, the acceleration 𝐟𝑐𝑎𝑝/𝜌, where 𝜌 

is the local VOF phase density, is much higher in a less dense phase and vice versa. The CSF 
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approach will lead to a thinning or thickening of the smooth transitional region between phases, 

depending on the direction of the vector 𝐟𝑐𝑎𝑝. If 𝐟𝑐𝑎𝑝 is pointing into a less dense phase, then the 

interface tends to thicken with time, whereas if it is pointing into a denser phase, the interface 

will become thinner with time. This problem has been resolved by Brackbill et al (1992) for two-

phase systems by using density scaling of the CSF (DS-CSF), as follows: 

𝑓𝑐𝑎𝑝 = −𝜎𝜅𝑖∇𝐶𝑖
𝜌

〈𝜌〉
        (2) 

where 〈𝜌〉 = (𝜌1 + 𝜌2)/2 is the average density between adjacent phases 1 and 2. This practice 

results in a symmetric distribution of the acceleration with respect to the interface.  

In this work, by following Tofighi and Yildiz (2013), the DS-CSF has been extended to three phases 

by splitting the resulting capillary force into three constituents, one per phase. Each of these 

phase-specific forces is given by equation (2) above, but instead of using interfacial surface 

tensions, three phase-specific surface tensions 𝜎n (where n = 1,2, 3) are used in these forces. This 

approach is valid only for three-phase systems, as will be discussed later. When focusing on a 

given phase n, the idea of density scaling is to treat the two others as a single n-adjacent phase 

with spatially varying density.  

By analogy with a two-phase system, but using now the density of the n-adjacent phase for the 

DS-CSF, the capillary force for a three-phase system can be computed as: 

𝑓𝑐𝑎𝑝 = ∑ 𝑓𝑛𝑐𝑎𝑝 =
3
𝑛=1 − ∑ 𝜎𝑛𝜅𝑛∇𝐶𝑛

𝜌

〈𝜌〉𝛼

3
𝑛=1     (3) 

where 𝐟n,cap is the equivalent of 𝐟𝑐𝑎𝑝 for phase n with 〈𝜌〉n = (𝜌n + 𝜌n-adjacent)/2. This formulation 

redistributes the surface forces across interfaces in such a way as to produce a symmetric 

acceleration. It remains to define the values of phase-specific surface tensions. The idea is based 

on the decomposition of the resulting force vector into three constituent phase-specific forces 

(see Tofighi and Yildiz (2013)). These phase-specific forces are then treated individually in the 

same manner as surface forces in two-phase systems, where only one type of interface is possible. 

For this purpose, the interfacial tension between phases n and 𝛽 is expressed through artificially 

introduced phase-specific surface tensions, so that 𝜎n𝛽 = 𝜎n + 𝜎𝛽 where:  

 {

𝜎1 = 0.5(𝜎12 + 𝜎13 − 𝜎23)
𝜎2 = 0.5(𝜎12 + 𝜎23 − 𝜎13)
𝜎3 = 0.5(𝜎13 + 𝜎23 − 𝜎12)

         (4) 

 

One difficulty in three phase systems is the possibility of direct contact between all phases. 

However, these situations are accounted for automatically by the foregoing capillary-force 

decomposition into the sum of phase-specific capillary forces.  
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