## Equations of elasticity: Cartesian grid

## Equations

In this model $\mathbf{u}=(\mathrm{U}, \mathrm{V}, \mathrm{W})$ is vector of displacement.
The equations of X -force balance are:
$0=\frac{\partial \sigma_{\mathrm{xx}}}{\partial \mathrm{x}}+\frac{\partial \sigma_{\mathrm{xy}}}{\partial \mathrm{y}}+\frac{\partial \sigma_{\mathrm{xz}}}{\partial \mathrm{z}}+\mathrm{f}_{\mathrm{x}}$
The displacements and the stresses are connected by Hooke's law:
$\sigma_{\mathrm{xx}}=2 \mathrm{G} \varepsilon_{\mathrm{x}}+\mathrm{LD}-\mathrm{HT}$,
$\sigma_{y y}=2 \mathrm{G} \varepsilon_{\mathrm{y}}+\mathrm{LD}-\mathrm{HT}$,
$\sigma_{z z}=2 \mathrm{G} \varepsilon_{\mathrm{z}}+\mathrm{LD}-\mathrm{HT}$,
$\sigma_{\mathrm{xy}}=\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{y}}+\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right), \sigma_{\mathrm{xz}}=\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{z}}+\frac{\partial \mathrm{W}}{\partial \mathrm{x}}\right), \sigma_{\mathrm{yz}}=\mathrm{G}\left(\frac{\partial \mathrm{V}}{\partial \mathrm{z}}+\frac{\partial \mathrm{W}}{\partial \mathrm{y}}\right)$,
$\mathrm{D}=\varepsilon_{\mathrm{xx}}+\varepsilon_{\mathrm{yy}}+\varepsilon_{\mathrm{zz}}$,
$\varepsilon_{\mathrm{xx}}=\frac{\partial \mathrm{U}}{\partial \mathrm{x}}, \varepsilon_{\mathrm{yy}}=\frac{\partial \mathrm{V}}{\partial \mathrm{y}}, \varepsilon_{\mathrm{zz}}=\frac{\partial \mathrm{W}}{\partial \mathrm{z}}$
here
D - dilatation (relative changing of volume at deformation),
G,L - first ( $\mu$ ) and second ( $\lambda$ ) Lame's constant:
E - Young's module,
P - Poisson's coefficient,
a - thermal-expansion coefficient,
$\mathrm{G}=\frac{\mathrm{E}}{2(1+\mathrm{P})}, \mathrm{L}=\frac{\mathrm{EP}}{(1+\mathrm{P})(1-2 \mathrm{P})}$.
$\mathrm{H}=\frac{\alpha \mathrm{E}}{1-2 \mathrm{P}}$

Use (2) can be written (1) as
$\left\{\frac{\partial}{\partial \mathrm{x}}\left[(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{U}}{\partial \mathrm{x}}\right]+\frac{\partial}{\partial \mathrm{y}}\left[\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{y}}\right]+\frac{\partial}{\partial \mathrm{z}}\left[\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{z}}\right]\right\}+\mathrm{f}_{\mathrm{x}}+$
$\frac{\partial}{\partial \mathrm{x}}\left[\mathrm{L}\left(\varepsilon_{y y}+\varepsilon_{z z}\right)-\mathrm{HT}\right]+\frac{\partial}{\partial y}\left[\mathrm{G} \frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right]+\frac{\partial}{\partial \mathrm{z}}\left[\mathrm{G} \frac{\partial \mathrm{W}}{\partial \mathrm{x}}\right]=0$
The Equations for $u_{y}$ and $u_{z}$ have a similar type.
The terms in figured bracket $\}$ is standard $\operatorname{div}(\mathrm{grad})$ term Phoenics with anisotropy diffusion.
For two-dimensional (x,y) problems, the U-equation simplifies to:
$\frac{\partial \sigma_{\mathrm{xx}}}{\partial \mathrm{x}}+\frac{\partial \sigma_{\mathrm{xy}}}{\partial \mathrm{y}}+\mathrm{f}_{\mathrm{x}}=0$,
$\sigma_{\mathrm{xx}}=(2 \mathrm{G}+\mathrm{L})\left(\frac{\partial \mathrm{U}}{\partial \mathrm{x}}\right)+\mathrm{L} \varepsilon_{\mathrm{yy}}+\mathrm{L} \varepsilon_{\mathrm{zz}}-\mathrm{H} \varepsilon_{\mathrm{t}}$,
$\sigma_{\mathrm{xy}}=\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{y}}\right)+\mathrm{G} \frac{\partial \mathrm{V}}{\partial \mathrm{x}}$
Stresses and strains in the z-direction are linked by the equation:

$$
\begin{equation*}
\sigma_{\mathrm{zz}}=-\mathrm{b}_{\mathrm{z}} \varepsilon_{\mathrm{zz}} \tag{3a}
\end{equation*}
$$

where $b_{z}$ is a parameter which expresses the extent to which the material is free to expand in that direction, which may vary between zero (for free expansion) and infinity (for absolute constraint).

With (3a) can be written as

$$
\varepsilon_{\mathrm{zz}}=\frac{1}{\mathrm{~L}+2 \mathrm{G}+\mathrm{b}_{\mathrm{z}}}\left[-\mathrm{L}\left(\varepsilon_{\mathrm{xx}}+\varepsilon_{\mathrm{yy}}\right)+\mathrm{H} \varepsilon_{\mathrm{t}}\right]
$$

For what is known as the Plane-Strain model, $\mathrm{b}_{\mathrm{z}}=\infty, \varepsilon_{\mathrm{zz}}=0, \sigma_{\mathrm{zz}}=\mathrm{L}\left(\varepsilon_{\mathrm{xx}}+\varepsilon_{\mathrm{yy}}\right)-\mathrm{H} \varepsilon_{\mathrm{t}}$,
while for what is known as the Plane-Stress model,

$$
\mathrm{b}_{\mathrm{z}}=0, \sigma_{\mathrm{zz}}=0, \quad \varepsilon_{\mathrm{zz}}=\frac{1}{\mathrm{~L}+2 \mathrm{G}}\left[-\mathrm{L}\left(\varepsilon_{\mathrm{xx}}+\varepsilon_{\mathrm{yy}}\right)+\mathrm{H} \varepsilon_{\mathrm{t}}\right]
$$

For one-dimensional (x) problems
$\sigma_{z z}=-\mathrm{b}_{\mathrm{z}} \varepsilon_{\mathrm{zz}}, \sigma_{\mathrm{yy}}=-\mathrm{b}_{\mathrm{y}} \varepsilon_{\mathrm{yy}}$
and
$\varepsilon_{z z}=\frac{1}{L+2 G+b_{z}} \frac{1-\mathrm{d}_{\mathrm{y}}}{1-\mathrm{d}_{\mathrm{y}} \mathrm{d}_{\mathrm{z}}}\left[-\mathrm{L} \varepsilon_{\mathrm{xx}}+\mathrm{H} \varepsilon_{\mathrm{t}}\right]$,
$\varepsilon_{y y}=\frac{1}{L+2 G+b_{y}} \frac{1-d_{z}}{1-\mathrm{d}_{\mathrm{y}} \mathrm{d}_{\mathrm{z}}}\left[-\mathrm{L} \varepsilon_{x x}+\mathrm{H} \varepsilon_{\mathrm{t}}\right]$,
$d_{y}=\frac{L}{L+2 G+b_{y}}, d_{z}=\frac{L}{L+2 G+b_{z}}$

## FVE

We shall use standard approximation for fluxes:

$$
\begin{align*}
& \left\{(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{U}}{\partial \mathrm{x}}\right\}_{\mathrm{E}} \Delta \mathrm{~A}_{\mathrm{E}}-\left\{(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{U}}{\partial \mathrm{x}}\right\}_{\mathrm{P}} \Delta \mathrm{~A}_{\mathrm{P}}+ \\
& +\left\{\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{y}}\right\}_{\mathrm{ne}} \Delta \mathrm{~A}_{\mathrm{en}}-\left\{\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{y}}\right\}_{\mathrm{se}} \Delta \mathrm{~A}_{\mathrm{es}}  \tag{4}\\
& +\left\{\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{z}}\right\}_{\mathrm{he}} \Delta \mathrm{~A}_{\mathrm{eh}}-\left\{\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{Z}}\right\}_{\mathrm{le}} \Delta \mathrm{~A}_{\mathrm{el}}+\mathrm{S}_{\mathrm{int}, \mathrm{e}}+\mathrm{f}_{\mathrm{x}, \mathrm{e}} \Delta \mathrm{~V}_{\mathrm{e}}=0
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{int}, \mathrm{e}}=\left\{\mathrm{L}_{\mathrm{E}}\left(\varepsilon_{\mathrm{yy}, \mathrm{E}}+\varepsilon_{z z, \mathrm{E}}\right) \Delta \mathrm{A}_{\mathrm{E}}-\mathrm{L}_{\mathrm{P}}\left(\varepsilon_{\mathrm{yy}, \mathrm{P}}+\varepsilon_{z z, \mathrm{P}}\right) \Delta \mathrm{A}_{\mathrm{P}}\right\}+ \\
&-\left\{\mathrm{H}_{\mathrm{E}} \mathrm{~T}_{\mathrm{E}} \Delta \mathrm{~A}_{\mathrm{E}}-\mathrm{H}_{\mathrm{P}} \mathrm{~T}_{\mathrm{P}} \Delta \mathrm{~A}_{\mathrm{P}}\right\}+ \\
&\left\{\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right)_{\mathrm{en}} \frac{\Delta \mathrm{~A}_{\mathrm{n}} \mathrm{G}_{\mathrm{n}}+\Delta \mathrm{A}_{\mathrm{En}} \mathrm{G}_{\mathrm{En}}}{2}-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right)_{\mathrm{es}} \frac{\Delta \mathrm{~A}_{\mathrm{s}} \mathrm{G}_{\mathrm{s}}+\Delta \mathrm{A}_{\mathrm{Es}} \mathrm{G}_{\mathrm{Es}}}{2}\right\}+ \\
&\left\{\left(\frac{\partial \mathrm{W}}{\partial \mathrm{x}}\right)_{\mathrm{eh}} \frac{\Delta \mathrm{~A}_{\mathrm{h}} \mathrm{G}_{\mathrm{h}}+\Delta \mathrm{A}_{\mathrm{Eh}} \mathrm{G}_{\mathrm{Eh}}}{2}-\left(\frac{\partial \mathrm{W}}{\partial \mathrm{x}}\right)_{\mathrm{el}} \frac{\Delta \mathrm{~A}_{\mathrm{l}} \mathrm{G}_{1}+\Delta \mathrm{A}_{\mathrm{El}} \mathrm{G}_{\mathrm{EI}}}{2}\right\}, \\
&\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right)_{\mathrm{en}}=\frac{\left(\mathrm{V}_{\mathrm{En}}-\mathrm{V}_{\mathrm{n}}\right)}{\delta \mathrm{x}_{\mathrm{e}}},\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{x}}\right)_{\mathrm{es}}=\frac{\left(\mathrm{V}_{\mathrm{Es}}-\mathrm{V}_{\mathrm{s}}\right)}{\delta \mathrm{x}_{\mathrm{e}}}, \ldots \ldots . \\
& \mathrm{G}_{\mathrm{n}}= \frac{\Delta \mathrm{y}_{\mathrm{P}}+\Delta \mathrm{y}_{\mathrm{N}}}{\frac{\Delta \mathrm{y}_{\mathrm{P}}}{\mathrm{G}_{\mathrm{P}}}+\frac{\Delta \mathrm{y}_{\mathrm{N}}}{\mathrm{G}_{\mathrm{N}}}}, \ldots . .
\end{aligned}
$$



Fig. 1 Internal $u_{x}$-Cell

## Boundary Condition

Tangential boundary (en, Fig. 1) :
$\mathrm{G} \frac{\partial \mathrm{u}_{\mathrm{x}}}{\partial \mathrm{y}}=\tau_{0}-\mathrm{G} \frac{\partial \mathrm{u}_{\mathrm{y}}}{\partial \mathrm{x}}$
At a FVE-level possible to unite two members:
$+\left\{G \frac{\partial U}{\partial y}\right\}_{\mathrm{ne}} \Delta \mathrm{A}_{\mathrm{en}}$
and
$\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right)_{\mathrm{en}} \frac{\Delta \mathrm{A}_{\mathrm{n}} \mathrm{G}_{\mathrm{n}}+\Delta \mathrm{A}_{\mathrm{En}} \mathrm{G}_{\mathrm{En}}}{2}$
Summary we shall get on boundary

$$
\begin{align*}
& +\left\{\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{y}}\right\}_{\mathrm{ne}} \Delta \mathrm{~A}_{\mathrm{en}}+\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right)_{\mathrm{en}} \frac{\Delta \mathrm{~A}_{\mathrm{n}} \mathrm{G}_{\mathrm{n}}+\Delta \mathrm{A}_{\mathrm{En}} \mathrm{G}_{\mathrm{En}}}{2}= \\
& \left\{\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{y}}+\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right)\right\}_{\mathrm{ne}} \Delta \mathrm{~A}_{\mathrm{en}}=\tau_{0, \mathrm{ne}} \Delta \mathrm{~A}_{\mathrm{en}} \tag{6}
\end{align*}
$$

I.e. on boundary by means of patch it is necessary to assign tangential stresses itself!

Normal boundary (e, Fig. 2) :


Fig. 2 Boundary $u_{x}$-Cell
Boundary condition :
$(2 \mathrm{G}+\mathrm{L})\left(\frac{\partial \mathrm{u}_{\mathrm{x}}}{\partial \mathrm{x}}\right)=\sigma_{\mathrm{xx}}-\mathrm{L} \varepsilon_{\mathrm{y}}-\mathrm{L} \varepsilon_{\mathrm{z}}+\mathrm{HT}$
Uniting members FVE, shall get
$\left\{(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{U}}{\partial \mathrm{x}}\right\}_{\mathrm{E}} \Delta \mathrm{A}_{\mathrm{E}}+\mathrm{L}_{\mathrm{E}}\left(\varepsilon_{y y, \mathrm{E}}+\varepsilon_{z z, \mathrm{E}}\right) \Delta \mathrm{A}_{\mathrm{E}}-\mathrm{H}_{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \Delta \mathrm{A}_{\mathrm{E}}=\sigma_{0, \mathrm{e}} \Delta \mathrm{A}_{\mathrm{E}}$
I.e. on boundary by means of patch it is necessary to assign normal stresses itself!

## Equations of elasticity: Polar grid

Initial equations - a Hooke's law ( $\mathrm{U}=\mathrm{u}_{\theta}, \mathrm{V}=\mathrm{u}_{\mathrm{r}}, \mathrm{W}=\mathrm{u}_{\mathrm{z}}$ ):

$$
\begin{aligned}
& \sigma_{\mathrm{rr}}=2 \mathrm{G} \varepsilon_{\mathrm{rr}}+\mathrm{Le}-\mathrm{HT}, \quad \mathrm{e}_{\mathrm{rr}}=\frac{\partial \mathrm{V}}{\partial \mathrm{r}}, \\
& \sigma_{\theta \theta}=2 \mathrm{G} \varepsilon_{\theta \theta}+\mathrm{Le}-\mathrm{HT}, \quad \mathrm{e}_{\theta \theta}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{U}}{\partial \theta}+\frac{\mathrm{V}}{\mathrm{r}}, \\
& \sigma_{\mathrm{zz}}=2 \mathrm{G} \varepsilon_{\mathrm{zz}}+\mathrm{Le}-\mathrm{HT}, \quad \mathrm{e}_{\mathrm{zz}}=\frac{\partial \mathrm{W}}{\partial \mathrm{z}}, \\
& \sigma_{\mathrm{r} \theta}=\mathrm{G}\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}+\frac{\partial \mathrm{U}}{\partial \mathrm{r}}-\frac{\mathrm{U}}{\mathrm{r}}\right), \\
& \sigma_{\mathrm{rz}}=\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{z}}+\frac{\partial \mathrm{W}}{\partial \mathrm{r}}\right), \\
& \sigma_{\mathrm{z} \mathrm{\theta}}=\mathrm{G}\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~W}}{\partial \theta}+\frac{\partial \mathrm{U}}{\partial \mathrm{z}}\right), \\
& \mathrm{e}=\mathrm{e}_{\mathrm{rr}}+\mathrm{e}_{\theta \theta}+\mathrm{e}_{\mathrm{zz}}
\end{aligned}
$$

and balance of force equation

$$
\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \sigma_{\mathrm{rr}}\right)+\frac{1}{\mathrm{r}} \frac{\partial \sigma_{\mathrm{r} \theta}}{\partial \theta}+\frac{\partial \sigma_{\mathrm{rz}}}{\partial \mathrm{z}}-\frac{\sigma_{\theta \theta}}{\mathrm{r}}+\mathrm{f}_{\mathrm{r}}=0,
$$

$$
\begin{equation*}
\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \sigma_{\theta \mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial \sigma_{\theta \theta}}{\partial \theta}+\frac{\partial \sigma_{\theta \mathrm{z}}}{\partial \mathrm{z}}+\frac{\sigma_{\mathrm{r} \theta}}{\mathrm{r}}+\mathrm{f}_{\theta}=0, \tag{9}
\end{equation*}
$$

$$
\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \sigma_{\mathrm{rz}}\right)+\frac{1}{\mathrm{r}} \frac{\partial \sigma_{\theta \mathrm{z}}}{\partial \theta}+\frac{\partial \sigma_{\mathrm{zz}}}{\partial \mathrm{z}}+\mathrm{f}_{\mathrm{z}}=0,
$$

With (4.1) and (4.2) can be V-equations written as

$$
\begin{aligned}
& \frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{V}}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left(\mathrm{G} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{G} \frac{\partial \mathrm{~V}}{\partial \mathrm{z}}\right)+ \\
& \frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}} \mathrm{r}\left(\mathrm{~L}\left(\mathrm{e}_{\theta \theta}+\mathrm{e}_{\mathrm{zz}}\right)-\mathrm{HT}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta} \mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{r}}-\frac{\mathrm{U}}{\mathrm{r}}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{G} \frac{\partial \mathrm{~W}}{\partial \mathrm{r}}\right)- \\
& -\frac{1}{\mathrm{r}}\left[2 \mathrm{G}\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{U}}{\partial \theta}+\frac{\mathrm{V}}{\mathrm{r}}\right)+\mathrm{L} \varepsilon_{\mathrm{rr}}+\mathrm{L}\left(\mathrm{e}_{\theta \theta}+\mathrm{e}_{\mathrm{zz}}\right)-\mathrm{HT}\right]+\mathrm{f}_{\mathrm{r}}=0,
\end{aligned}
$$

$$
\begin{align*}
& \left\{\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{V}}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left(\mathrm{G} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{G} \frac{\partial \mathrm{~V}}{\partial \mathrm{z}}\right)\right\}+ \\
& \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{~L}\left(\mathrm{e}_{\theta \theta}+\mathrm{e}_{\mathrm{zz}}\right)-\mathrm{HT}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta} \mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{r}}-\frac{\mathrm{U}}{\mathrm{r}}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{G} \frac{\partial \mathrm{~W}}{\partial \mathrm{r}}\right)-  \tag{10}\\
& -\frac{1}{\mathrm{r}}\left[2 \mathrm{G} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{U}}{\partial \theta}+\mathrm{L} \varepsilon_{\mathrm{rr}}\right]-2 \mathrm{G} \frac{\mathrm{~V}}{\mathrm{r}^{2}}+\mathrm{f}_{\mathrm{r}}=0,
\end{align*}
$$

This is polar analog main Cartesian equation (3). Similar equations possible to write for U and W component:

$$
\begin{align*}
& \left\{\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rG} \frac{\partial \mathrm{U}}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left((2 \mathrm{G}+\mathrm{L}) \frac{1}{\mathrm{r}} \frac{\partial \mathrm{U}}{\partial \theta}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{z}}\right)\right\}+ \\
& \frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left(\mathrm{~L}\left(\mathrm{e}_{\mathrm{rr}}+\mathrm{e}_{\mathrm{zz}}\right)-\mathrm{HT}+(2 \mathrm{G}+\mathrm{L}) \frac{\mathrm{V}}{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left[\mathrm{rG}\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}-\frac{\mathrm{U}}{\mathrm{r}}\right)\right]+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{G} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{~W}}{\partial \theta}\right)+ \\
& +\mathrm{G} \frac{1}{\mathrm{r}}\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}+\frac{\partial \mathrm{U}}{\partial \mathrm{r}}-\frac{\mathrm{U}}{\mathrm{r}}\right)+\mathrm{f}_{\theta}=0,  \tag{11}\\
& (11)  \tag{12}\\
& \left\{\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rG} \frac{\partial \mathrm{~W}}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left(\mathrm{G} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{~W}}{\partial \theta}\right)+\frac{\partial}{\partial \mathrm{z}}\left((2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{W}}{\partial \mathrm{z}}\right)\right\}+ \\
& \frac{\partial}{\partial \mathrm{z}}\left(\mathrm{~L}\left(\mathrm{e}_{\mathrm{rr}}+\mathrm{e}_{\theta \theta}\right)-\mathrm{HT}\right)+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left[\mathrm{rG} \frac{\partial \mathrm{~V}}{\partial \mathrm{z}}\right]+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left(\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{z}}\right)+\mathrm{f}_{\mathrm{z}}=0
\end{align*}
$$

## Boundary Condition on FGE-level

Displacement $\mathrm{U}\left(\mathrm{u}_{\theta}\right)$ - tangential boundary (N/S and H/L).
Similar doing we have, either as in Cartesian case - two members unite on boundaries:

$$
\begin{aligned}
& \left\{\mathrm{G} \frac{\partial \mathrm{U}}{\partial \mathrm{r}}\right\}_{\mathrm{ne}} \Delta \mathrm{~A}_{\mathrm{en}}+\left[\left(\frac{\partial \mathrm{V}}{\partial \theta}\right)_{\mathrm{en}}-\mathrm{U}_{\mathrm{en}}\right] \frac{\Delta \mathrm{A}_{\mathrm{n}} \mathrm{G}_{\mathrm{n}}+\Delta \mathrm{A}_{\mathrm{En}} \mathrm{G}_{\mathrm{En}}-}{2 \mathrm{r}_{\mathrm{n}}}- \\
& \left\{\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}-\frac{\mathrm{U}}{\mathrm{r}}\right)\right\}_{\mathrm{ne}} \Delta \mathrm{~A}_{\mathrm{en}}=\tau_{0, \mathrm{ne}} \Delta \mathrm{~A}_{\mathrm{en}}
\end{aligned}
$$

Displacement U $\left(\mathrm{u}_{\theta}\right)$ - normal boundary (E/W).
Uniting members FVE, shall get
$\left\{(2 \mathrm{G}+\mathrm{L})\left(\frac{1}{\mathrm{r}} \frac{\partial \mathrm{U}}{\partial \theta}+\frac{\mathrm{V}}{\mathrm{r}}\right)\right\}_{\mathrm{E}} \Delta \mathrm{A}_{\mathrm{E}}+\mathrm{L}_{\mathrm{E}}\left(\varepsilon_{\mathrm{rr}, \mathrm{E}}+\varepsilon_{\mathrm{zz}, \mathrm{E}}\right) \Delta \mathrm{A}_{\mathrm{E}}-\mathrm{H}_{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \Delta \mathrm{A}_{\mathrm{E}}=\sigma_{0, \mathrm{e}} \Delta \mathrm{A}_{\mathrm{E}}$
Displacement $V\left(u_{\underline{I}}\right)-$ tangential boundary ( $\mathrm{E} / \mathrm{W}$ and $\mathrm{H} / \mathrm{L}$ ). Similar doing

$$
\begin{aligned}
& \left\{\mathrm{G} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}\right\}_{\mathrm{tan}} \Delta \mathrm{~A}_{\tan }+\left[\left(\frac{\partial \mathrm{U}}{\partial \mathrm{r}}\right)-\mathrm{U}\right]_{\mathrm{tan}} \frac{\Delta \mathrm{~A}_{\mathrm{e}} \mathrm{G}_{\mathrm{e}}+\Delta \mathrm{A}_{\mathrm{Ne}} \mathrm{G}_{\mathrm{Ne}}}{2 \mathrm{r}_{\mathrm{e}}}- \\
& \left\{\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~V}}{\partial \theta}-\frac{\mathrm{U}}{\mathrm{r}}\right)\right\}_{\mathrm{tan}} \Delta \mathrm{~A}_{\mathrm{tan}}=\tau_{0, \tan } \Delta \mathrm{~A}_{\mathrm{tan}}
\end{aligned}
$$

Displacement V ( $\mathrm{u}_{\mathrm{r}}$ )- normal boundary (N/S).
Here appears the problem with association of the members. This is connected with difference by form of the members in V-equation

$$
\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{V}}{\partial \mathrm{r}}\right) \text { and } \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{~L}\left(\mathrm{e}_{\theta \theta}+\mathrm{e}_{\mathrm{zz}}\right)-\mathrm{HT}\right)
$$

On FGE-level
$\left\{(2 G+L) \frac{\partial V}{\partial y}\right\}_{N} \Delta A_{N}-\left\{(2 G+L) \frac{\partial V}{\partial y}\right\}_{P} \Delta A_{P}$ and

$$
\frac{\Delta \mathrm{A}_{\mathrm{N}}+\Delta \mathrm{A}_{\mathrm{P}}}{2}\left\{\left[\mathrm{~L}_{\mathrm{N}}\left(\varepsilon_{\theta \theta, \mathrm{N}}+\varepsilon_{z z, \mathrm{~N}}\right)-\mathrm{H}_{\mathrm{N}} \mathrm{~T}_{\mathrm{N}}\right]-\left[\mathrm{L}_{\mathrm{P}}\left(\varepsilon_{\theta \theta, \mathrm{P}}+\varepsilon_{z z, \mathrm{P}}\right)-\mathrm{H}_{\mathrm{P}} \mathrm{~T}_{\mathrm{P}}\right] \Delta \mathrm{A}_{\mathrm{P}}\right\}
$$

On N -boundary can to write

$$
\begin{aligned}
& \left\{(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{V}}{\partial \mathrm{y}}\right\}_{\mathrm{n}} \Delta \mathrm{~A}_{\mathrm{n}}+\frac{\Delta \mathrm{A}_{\mathrm{n}}+\Delta \mathrm{A}_{\mathrm{P}}}{2}\left\{\left[\mathrm{~L}_{\mathrm{n}}\left(\varepsilon_{\theta \theta, \mathrm{n}}+\varepsilon_{z z, \mathrm{n}}\right)-\mathrm{H}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}}\right]\right\}= \\
& \left\{(2 \mathrm{G}+\mathrm{L}) \frac{\partial \mathrm{V}}{\partial \mathrm{y}}+\mathrm{L}\left(\varepsilon_{\theta \theta}+\varepsilon_{z z}\right)-\mathrm{HT}\right\}_{\mathrm{n}} \Delta \mathrm{~A}_{\mathrm{n}}+\frac{\Delta \mathrm{A}_{\mathrm{P}}-\Delta \mathrm{A}_{\mathrm{n}}}{2}\left\{\left[\mathrm{~L}_{\mathrm{n}}\left(\varepsilon_{\theta \theta, \mathrm{n}}+\varepsilon_{z z, \mathrm{n}}\right)-\mathrm{H}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}}\right]\right\}= \\
& \sigma_{0, \mathrm{n}} \Delta \mathrm{~A}_{\mathrm{n}}+\frac{\Delta \mathrm{A}_{\mathrm{p}}-\Delta \mathrm{A}_{\mathrm{n}}}{2}\left\{\left[\mathrm{~L}_{\mathrm{n}}\left(\varepsilon_{\theta \theta, \mathrm{n}}+\varepsilon_{z z, \mathrm{n}}\right)-\mathrm{H}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}}\right]\right\}
\end{aligned}
$$

Displacement $\mathrm{W}\left(\mathrm{u}_{2}\right)$ - tangential and normal boundary. Similarly Cartesian coordinate system

## Colocate Displacements Mehod

We shall consider FVE for $2 \mathrm{D}(\mathrm{x}, \mathrm{y})$ cartesian grid when displacements are determined in the centre scalar cell.


The equations of X -force balance are:
$\frac{\partial \sigma_{\mathrm{xx}}}{\partial \mathrm{x}}+\frac{\partial \sigma_{\mathrm{xy}}}{\partial \mathrm{y}}+\mathrm{f}_{\mathrm{x}}=0$,
The displacements and the stresses are connected by Hooke's law:

$$
\begin{align*}
\sigma_{\mathrm{xx}} & =\left(2 \mathrm{G}+\mathrm{L}_{\mathrm{m}}\right) \varepsilon_{\mathrm{x}}+\mathrm{L}_{\mathrm{m}} \varepsilon_{\mathrm{y}}-\mathrm{H}_{\mathrm{m}} \mathrm{~T}, \\
\sigma_{\mathrm{yy}} & =\left(2 \mathrm{G}+\mathrm{L}_{\mathrm{m}}\right) \varepsilon_{\mathrm{y}}+\mathrm{L}_{\mathrm{m}} \varepsilon_{\mathrm{x}}-\mathrm{H}_{\mathrm{m}} \mathrm{~T}, \\
\sigma_{\mathrm{zz}} & =-\mathrm{b}_{\mathrm{z}} \varepsilon_{\mathrm{z}}, \\
\sigma_{\mathrm{xy}} & =\mathrm{G}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{y}}+\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\right),  \tag{14}\\
\varepsilon_{\mathrm{xx}} & =\frac{\partial \mathrm{U}}{\partial \mathrm{x}}, \varepsilon_{\mathrm{yy}}=\frac{\partial \mathrm{V}}{\partial \mathrm{y}}, \\
\varepsilon_{\mathrm{zz}} & =-\frac{1}{\mathrm{~L}+2 \mathrm{G}+\mathrm{b}_{\mathrm{z}}}\left[\mathrm{~L}\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right)-\mathrm{HT}\right], \\
\mathrm{L}_{\mathrm{m}} & =\mathrm{L} \frac{2 \mathrm{G}+\mathrm{b}_{\mathrm{z}}}{2 \mathrm{G}+\mathrm{b}_{\mathrm{z}}+\mathrm{L}}, \mathrm{H}_{\mathrm{m}}=\mathrm{H} \frac{2 \mathrm{G}+\mathrm{b}_{\mathrm{z}}}{2 \mathrm{G}+\mathrm{b}_{\mathrm{z}}+\mathrm{L}}
\end{align*}
$$

Integrating equation (13) on scalar cell P , possible get FVE

$$
\begin{align*}
& \left\{\left(2 G+L_{m}\right) \frac{\partial U}{\partial x}\right\}_{e} \Delta A_{e}-\left\{\left(2 G+L_{m}\right) \frac{\partial U}{\partial x}\right\}_{w} \Delta A_{w}+ \\
& \quad+\left\{G \frac{\partial U}{\partial y}\right\}_{n} \Delta A_{n}-\left\{G \frac{\partial U}{\partial y}\right\}_{s} \Delta A_{s}+S_{i n t, P}+f_{x, P} \Delta V_{P}=0 \tag{15}
\end{align*}
$$

Where internal source consists of gradient and tangential terms:

$$
\begin{align*}
S_{i n t, P}=\{ & \left.\left\{\mathrm{L}_{\mathrm{m}, \mathrm{e}} \frac{\mathrm{~V}_{\mathrm{en}}-\mathrm{V}_{\mathrm{es}}}{\Delta \mathrm{y}_{\mathrm{P}}}-\mathrm{H}_{\mathrm{m}, \mathrm{e}} \mathrm{~T}_{\mathrm{e}}\right] \Delta \mathrm{A}_{\mathrm{e}}-\left[\mathrm{L}_{\mathrm{m}, \mathrm{w}} \frac{\mathrm{~V}_{\mathrm{wn}}-\mathrm{V}_{\mathrm{ws}}}{\Delta \mathrm{y}_{\mathrm{P}}}-H_{\mathrm{m}, \mathrm{w}} \mathrm{~T}_{\mathrm{w}}\right] \Delta \mathrm{A}_{\mathrm{w}}\right\}+  \tag{16}\\
& \left\{\mathrm{G}_{\mathrm{n}} \frac{\mathrm{~V}_{\mathrm{en}}-V_{\mathrm{wn}}}{\Delta \mathrm{x}_{\mathrm{P}}} \Delta A_{\mathrm{n}}-G_{\mathrm{s}} \frac{\mathrm{~V}_{\mathrm{es}}-\mathrm{V}_{\mathrm{ws}}}{\Delta \mathrm{x}_{\mathrm{P}}} \Delta A_{\mathrm{s}}\right\}
\end{align*}
$$

For calculation all property-coefficients on faces of cells is used harmonic interpolation, for instance
$\frac{\Delta y_{P}+\Delta y_{N}}{G_{n}}=\frac{\Delta y_{P}}{G_{P}}+\frac{\Delta y_{N}}{G_{N}}$,
For calculation of the temperature on faces is used linear interpolation $T_{e}=T_{P}+\frac{T_{E}-T_{P}}{\delta x_{e}} \frac{\Delta x_{P}}{2}$,
For calculation of displacements in corners (the centre edges in z-direction), for instance Ven shall consider "red"-rectangle P-E-E-N. We Shall consider that in this rectangle
$V=V_{P}+\left(\frac{\partial V}{\partial x}\right)_{P}\left(x-x_{P}\right)+\left(\frac{\partial V}{\partial y}\right)_{P}\left(y-y_{P}\right)+\left(\frac{\partial^{2} V}{\partial x \partial y}\right)_{P}\left(x-x_{P}\right)\left(y-y_{P}\right)$
and
$\left(\frac{\partial V}{\partial x}\right)_{P}=\frac{V_{E}-V_{P}}{\delta x_{e}},\left(\frac{\partial V}{\partial y}\right)_{P}=\frac{V_{N}-V_{P}}{\delta y_{n}}$,
$\left(\frac{\partial^{2} V}{\partial x \partial y}\right)_{P}=\frac{\frac{V_{N}-V_{E N}}{\delta x_{e}}-\left(\frac{\partial V}{\partial x}\right)_{P}}{\delta y_{n}}$

## Boundary Condition

The Boundary conditions are assigned similarly mate the staggered displacements!

