
Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Relational data input for
PHOENICS

Contents
• The need for a relational input capability

• The Advanced PHOENICS Input Language
• The VR-Editor in ‘protected mode’
• PRELUDE, the pre-pre-processor

• The ‘Gateway’ concept

• A room-fire example
• PARSOL, local grid refinement and multi-runs

By Brian Spalding, September, 2008



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Relational data input to
PHOENICS

Please note
This presentation has been prepared for persons who

are already familiar with PHOENICS, and especially for users of 

its version  for heating, ventilating, air-conditioning and fire 

simulation, FLAIR.

Persons more familiar with other CFD codes might care to ask 

themselves: ‘Does my code have relational data-input
capabilities? If so, how do they compare with those of 

PHOENICS? But, if not, why not?’



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The need for a relational 
input capability

It is often required to ensure that the 
positions and sizes of objects conform to 
some rules. For example, doors must be 
of the right size to fit apertures in walls.

Similarly chairs must have their legs in 
contact with the floor; and sitting persons 
must be in touch with their seats.

Then if one moves the aperture or the 
chair, one needs the door and the person 
to move with them.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The need for a relational 
data-input capability

The PHOENICS  Virtual-Reality Editor does have a  ‘grouping’
feature which enables relative-position connections to be 
expressed  and recorded in the Q1 file; but it does not allow
members of the group to change relative size or position.

Therefore, if the Q1 is to be used again with even slightly 
modified geometry, the user has to re-define the lost 
relationships all over again.

This deficiency has now been remedied, in two different ways: 
by
1. use of the VR-Editor in ‘protected mode’, and more fully 
2. use of the new Graphical User Interface: PRELUDE.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The historical background:
the rise and temporary eclipse of the 

PHOENICS Input Language

• Therefore, even if expert users hand-edited relationships into a Q1 file, once 
the VR-Editor had read them, it recorded only their numerical implications.

• In the early days of PHOENICS, data-input was effected by way of 
assignment  statements, edited into files (Q1s). The statements were 
expressed in terms of the first PHOENICS Input Language, known as PIL.

• During the following years, PIL acquired many new capabilities:          
Logical structures, DO-loops, capabilities in respect of graphics, file-
handling, etc. This ‘advanced PIL’ still flourishes; and it is used with much 
success by experts. 
• Advanced PIL is well able to express the required relationships between 
the sizes and positions of different objects in a scenario.

• As the number of new users of PHOENICS increased, many of whom were 
reluctant to learn PIL, menu-based input procedures  were  provided: users 
clicked buttons or typed characters  into boxes; then the PHOENICS Satellite 
wrote the Q1 file for them. Most users nowadays use these menus exclusively.

• However, although many advanced-PIL features are exploited by the menu 
system, they do not appear in the Q1s which the Satellite writes.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Examples of the obliterating
tendency of the VR-Editor

Having read the above, the VR-Editor would write simply:
> OBJ, NAME,        DOOR
> OBJ, SIZE,          0.850000E+00, 0.000000E+00, 1.800000E+00
> OBJ, NAME,       APERTURE
> OBJ, SIZE,         0.000000E+00, 0.850000E+00, 1.800000E+00

The Editor retains only the single-instance significance; but it 
obliterates the declarations.

Example 1. An advanced-PIL expert might write:
REAL(width, height) ! declarations
width=0.85; height=1.80                 ! settings
> OBJ, NAME, DOOR
> OBJ, SIZE,  width, 0.0, height     ! uses

> OBJ, NAME, APERTURE
> OBJ, SIZE, 0.0, width, height      ! uses



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Examples of the obliterating
tendency of the VR-Editor

Having read and understood this, the VR-Editor would write simply:

> OBJ, POSITION, 0.000000E+00, 0.000000E+00, 2.000000E+00

Once more, the Editor retains only the single-instance values;
but it obliterates the declarations and condition which led to them.

Example 2. An advanced-PIL expert might write:

REAL(size1, size2)                     ! declarations
size1=1.0; size2=2.0                    ! settings

if (size1.gt.size2) then                ! condition
> OBJ, POSITION, 0., 0., Size1   ! Make z-position of object
else                                              ! equal to the larger of size1
> OBJ, POSITION, 0., 0., Size2   ! and size2
endif

This can very irritating!



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Some more history;
three features needing protection

3. In 2007 it was recognised that a similar device could be used to protect those 
advanced-PIL statements (declarations, IF-statements, relationships, etc) which 
the Editor should not be allowed to obliterate.

1. In 1998 the PLANT feature was introduced into PHOENICS. This allowed 
formulae to be placed in the Q1 file, which after interpretation by the satellite, 
caused corresponding Fortran coding to be created, compiled and linked to the 
solver module.

2. Then in 2001 the In-Form feature was introduced. Its purpose and effect were 
the same, namely to allow users to extend the simulation capabilities of 
PHOENICS; but it did so without requiring Fortran coding to be created, 
compiled  or linked into a new executable.

Both PLANT and In-Form statements had to be protected from the 
obliterating tendencies of the VR-Editor, by ‘SAVE’ markers placed before 
and after them; these warned the Editor to save the statements and 
place them properly in the Q1 file which it was writing.

Thus came into existence the ‘protected mode’ of satellite operation, the 
operation of which will now be illustrated.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

A protected-mode example
FLAIR-library case, I201

The image on the right  
shows instantaneous 
temperature distributions
calculated on the assumption 
that a fire is burning on the 
floor of a partitioned room.
The q1 file has been in the 
PHOENICS/FLAIR input-file 
library for many years as 
i201.

The 2008 version of this file will be used as an example of how 
the use of the protected mode of Satellite operation enables 
relationships to be expressed and preserved in Q1 files.

In effect, all the features of advanced PIL have now become available to those 
users of the VR-Editor who are willing also  to use its in-built text-editor.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Differences between old 
and new i201.htm

Comparison of the old and new Q1s reveals that the latter has 
additional features, of which a few will now be described.

• The new file declares logical variables ‘zup’ and ’fourwall’ and sets
them thus between SAVE1BEGIN and SAVE1END markers:

SAVE1BEGIN             ! Marks start of section to be protected

Group 1. Run Title
boolean(zup,fourwall) ! declarations
zup=f                              ! settings
fourwall=t
TEXT( Room air flows; I201;  zup=:zup:           

Echo InForm settings for Group  1
Group 1. Run Title
SAVE1END                  ! Marks end of section to be protected

It suffices to explain only ‘zup’ . This stands for z-direction is ‘up’ and has been 
introduced because the original file, contrary to current convention, used x as ‘up’.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Use of the logical variable zup
to change the ‘up’ direction

On the right is the first VR-Editor 
view when zup=f, its default value. 
But when, during the VR-Editor 
session, the Q1 file is hand-edited 
and zup=t is set, saving and loading 
the working files leads, below, to …

what looks like the same picture, but, 
closely examined, proves to have its 
axes differently lettered.

Advanced-PIL lines in the Q1 have made 
all the changes in response to the setting 
of a single variable, zup.

It is much harder to do this interactively!



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Changing positions and sizes

This was effected by opening the q1 
for editing while still in VR-Editor 
mode, and then finding and 
changing three of the variables
which are declared there, namely:

‘doorzpos’, which governs the 
position of the door,

‘doorhigh’ which governs its height,

‘prt1wide’ which affects the width  of 
the lowest (on the picture) partition.

Evidently, the wall aperture has changed its position and height to accord with the 
door; and  all the partitions have changed their sizes or positions in order to 
preserve the relationships which are implied by the Q1.

Moreover, because they are protected by ‘SAVE’ markers, the relationships 
cannot be obliterated by the Editor, which dutifully writes precisely what it has read.

Here the door and partitions have 
moved.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

How the relationships are 
expressed in the Q1

> OBJ,    NAME,        PART-1
xpos=0.0 ; ypos=0.0; zpos=prt1zpos
xsiz=prt1high   ; ysiz= prt1wide   ; zsiz=prt1thck

> OBJ,    NAME,        PART-2
xpos=0.0 ; ypos= prt1wide; zpos=0.0
xsiz=prt1high   ; ysiz= prt1thck   ; zsiz=prt2wide

> OBJ,    NAME,        PART-3
xpos=0.0 ; ypos=prt1wide; zpos= prt3zpos
xsiz=prt1high   ; ysiz=prt1thck    ; zsiz=prt2wide

The relationships between the 
sizes and positions are expressed 
in the  Q1 file by the lines printed on 
the right.

It is easy to understand their 
meanings, once it is remembered 
that they were written for the non-
conventional x-is-up z-is-along
co-ordinate system. 

How, it might be asked, was the switch from the non-conventional system to the 
conventional effected? The  following two lines, appearing after the setting and 
before the use of the geometric attributes of each object, did all that was necessary:

if(zUP) then
dummy=zpos; zpos=xpos; xpos=ypos; ypos=dummy
dummy=zsiz; zsiz=xsiz; xsiz=ysiz; ysiz=dummy
endif

Such are the tricks that a little knowledge of advanced PIL allows one to play.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Introducing new logic

It will then be found that, when the Editor is run, the partitions and the fire are 
present or absent according to the settings of the respective variables.

Suppose that it is desired, temporarily, to remove the partitions and/or
the fire from the scene. This can be done very simply via the built-in editor during
a VR-session, as follows, namely by:

1. in imitation of what has been done for ‘zup’ and ‘fourwall’, declaring new 
boolean variables: ‘nopart’ and ‘nofire’;
2. setting them = t or = f, as desired;
3. on the line above those defining partition-object attributes, inserting the lines; 

if(nopart) then
goto nopart
endif

4. on the line below the attribute-defining lines inserting:
label nopart

5. making the corresponding insertions above and below the fire-object lines.

This is another example of how the protected mode of operation allows useful 
variables to be declared and used, without, as hitherto, being obliterated.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Introducing interactivity

Advanced PIL allows interactive modification of settings. Thus, if the following lines
are typed into the Q1:

mesg(nopart = :nopart: OK? If not, type N
readvdu(ans,char,Y)
if(:ans:.eq.N.or.:ans:.eq.n) then
nopart=f
endif
nopart

the following question will appear on the screen:

Typing N (or n) will then set nopart=F; then no partitions will 
be present to obstruct the flow in the room.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Introducing interactivity;
the satellite as a calculator

Loading core library case 011 into the PHOENICS satellite leads to the following:
Evidently PHOENICS is offering to 
perform the role of a calculator; 
and it suggests some mathematical 
operations which its user might like 
to perform.

Advanced PIL is worth learning!

Thereafter the required result
appears instantly on the screen.

Having typed the reference-number 
of the formula into the enter-your-
answer box, the user is asked to 
supply the values of the constants 
a, b and c which are of interest.

If some other operation is 
preferred, the user can edit the 
file 011.htm appropriately, so as 
to provide the additional formula. 



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Introducing a new object

New objects can be introduced 
interactively, as is well known. 
However, they can also be 
introduced by hand-editing. 

Thus a user might have noticed 
the library case i200 contains a 
standing man, and wish to have 
one in i201 also. Then he or she 
could simply copy the lines from 
the relevant q1, perhaps 
modifying them slightly by use of 
xpos, etc.

xpos=1.500000E+00; ypos=2.000000E+00;zpos= 
0.000000E+00
xsiz=3.000000E-01; ysiz=6.000000E-01;zsiz= 
1.760000E+00
> OBJ,    NAME,        MAN
> OBJ,    POSITION,    :xpos:, :ypos: ,:zpos:
> OBJ,    SIZE,        :xsiz:, :ysiz:, :zsiz:
> OBJ,    GEOMETRY,    standing
> OBJ,    ROTATION24,        5
> OBJ,    TYPE,        PERSON
> OBJ,    POSTURE,     STANDING
> OBJ,    FACING,      +X
> OBJ,    WIDTH,        :ysiz:
> OBJ,    DEPTH,        :xsiz:
> OBJ,    HEIGHT,       :zsiz:
> OBJ,    SOURCE-FORM,   Total-heat
> OBJ,    HEAT,         8.000000E+01

Then, if the partitions and fire have been 
removed and the solver activated, the picture on 
the left will appear in the corner of the room.

As the lines above dictate and the picture 
confirms, the man is a source of heat.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Introducing an array of objects

If one man can be introduced, why not 
many? The do loop feature of 
advanced PIL makes this easy, as 
shown below:

do ixx=1,nmanx
do iyy=1,nmany
xpos=1.500000E+00; ypos=2.000000E+00;zpos= 

0.000000E+00
xsiz=3.000000E-01; ysiz=6.000000E-01;zsiz= 
1.760000E+00
xpos=1.5*:ixx:;ypos=2.0*:iyy:; zpos=0.0
> OBJ,    NAME,        MAN:ixx::iyy:
> OBJ,    POSITION,    :xpos:, :ypos: ,:zpos:
> OBJ,    SIZE,        :xsiz:, :ysiz:, :zsiz:

> OBJ,    WIDTH,        :ysiz:
> OBJ,    DEPTH,        :xsiz:
> OBJ,    HEIGHT,       :zsiz:
> OBJ,    SOURCE-FORM,   Total-heat
> OBJ,    HEAT,         8.000000E+01
enddo
enddo

The picture above shows what 
results when the VR-Editor is 
activated. One can change the 
numbers of rows and columns by 
declaring and setting the variables:  
’nmanx’ and ‘nmany’.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Changing their sizes

The following further lines placed in the 
protected Q1:
real(shrink,factor)
factor=1/(nmanx*nmany)
shrink=factor
do ixx=1,nmanx
do iyy=1,nmany
factor=factor+shrink
xpos=1.5E+00; ypos=2.E+00;zpos= 
0.0E+00
xsiz=3.E-01*factor; ysiz=6.E-01*factor;
zsiz= 1.76*factor
xpos=1.5*:ixx:;ypos=2.0*:iyy:; zpos=0.0

… will cause the sizes of the men to vary as shown above.

Of course, innumerable formulae for changing the sizes and 
positions could be devised; and the Editor will not obliterate 
them because they are ‘SAVEd’.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Results (for many men)

The results are quickly obtained by running the PHOENICS solver, and 
then the VR-Viewer; and they are as expected. See below, (for the 
equally-sized men). Warm air rises above each of them,



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Summarising remarks about the use of  
protected-mode Q1s

• Protected-mode Q1s are easier to read and to edit than those created by the 
VR-Editor, because they contain more understandable words and fewer hard-
to-comprehend numbers.

• When PHOENICS users recognise what freedom 
the ‘protected mode’ affords them, they will finally 
cease to feel forced always to work interactively. 

• How to use the Advanced PHOENICS Input 
Language is explained in the PHOENICS 
Encyclopaedia.  

•They will cease to be the ‘prisoners of the mouse’,
as illustrated on the right.

• Moreover, much more complex relationships can be expressed than have 
been exemplified so far; and they can also contain non-geometric variables, such 
as sources, initial values, material properties and time.

• If these words are the names of declared PIL variables, they can express 
relationships between the positions and sizes of individual objects.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

But that’s not all;
there’s PRELUDE!

1. Although the ‘protected mode’ does allow Advanced PIL to be exploited, 
that language has some limitations.

For example, although it does allow one- or more-dimensional 
arrays to be employed, their arguments must always be integers.  
So it does not understand such constructs as:

xpos(door),  
where door is an object name.

The answer? PRELUDE, the  pre-pre processor, and its Gateways.

2.The VR-Editor does not itself allow the typing of expressions into its 
dialogue Boxes; nor does it provide any error-checking when the built-in 
text editor is used.

Why we need more:



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

What PRELUDE provides

The more includes:
• It can use object names as the arguments of its functions.
• Expressions can be typed into its dialogue boxes.
• The expressions can be of unlimited complexity.
• It provides error-checking and ‘undo’ capabilities.
• It has a more flexible position/size/rotation language.
• It can handle many more CAD formats. 
• It can launch multiple runs with systematic data-input variations.
• It can create parameterised objects by accessing Shapemaker. 
• It stores its output in multiple-instance Q3 files instead of single-
instance Q1s.

PRELUDE provides both more and less than the VR-Editor & Viewer.

The less includes:
• It has still only limited results-display capability, so uses  the Viewer.
• It (deliberately) offers users the restricted choice of data-input possibilities 
which is appropriate to the ‘Gateway’ in question.

Gateways are the modern equivalent of ‘Special-Purpose Programs’.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways

When PRELUDE is launched, it asks what is to be loaded; and it offers certain 
‘Gateways’. These are quick-access routes to the particular features of 
PHOENICS which are likely to be useful to narrow-interest users.

PHOENICS-FLAIR users are likely to want to use the HVAC Gateway; but the 
others shown as available here are: ‘Beginner’, for those who want to learn; 
‘VWT’, for those who wish to use the ‘Virtual Wind Tunnel’; and ‘HEATEX’, 
for those who are concerned with heat exchangers.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
the ‘roomfire’ scenario

If  HVAC is selected, another menu will appear. Then selection of the item called 
‘roomfire’ will load a scenario which has been designed to resemble closely that of 
library case I201 which has been discussed above.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
the ‘room-fire’ scenario

Their attributes can be revealed by clicking on the object name, so 
as to select it, and then on the red-tick icon in the tool-bar shown 
below.

On the left of the image of the scenario,  PRELUDE displays the so-
called ‘object tree’. 
At its top are PRELUDE-specific objects, such as are explained  in the 
tutorial supplied with the Beginners Gateway, begin1.htm 

Then follow items which are familiar to PHOENICS users; 
specifically the names of the solved-for and whole-field-stored 
variables are listed, each being treated as a ‘virtual object’ having 
definable attributes.

Below them will be seen the names of the substantial objects which 
constitute the scenario: fire, door, open(ing) and the partitions, walls 
etc, which were encountered in library case i201.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
attributes of objects

Here for example are the
attributes of the more-
conventional object called
‘open’, the aperture in the wall 
which can be closed by the door.

Therefore, if the door is moved, the opening will move with it, just as occurred 
when the scenario was  described by a ‘protected Q1’, earlier in this presentation.

These attributes are 
understandable expressions;
thus its y-position is given as 
‘doorypos-doorwide’.

Its attributes are revealed in the 
white boxes by clicking on its 
name in the tree and then on the 
red tick of the top-menu bar.

Moreover PRELUDE can handle more-flexibly-formulated expressions. Thus:
‘ypos(door)-ysize(door)’ would have the same significance, and obviates PIL’s
need to declare the non-standard variables: ‘doorypos’ and ‘roomwide’.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
attributes of objects (continued)

‘OPEN’ has of course other 
attributes, as this image shows. 
They are the same as would 
appear in a Q1 file. 

Suppose one wishes to make the 
inflow through the ‘supply’ port at 
first 0.0, rising to 5 m/s after 120 
seconds, when the fire starts.

However, PRELUDE allows more 
complex entry and leaving 
relationships to be specified than 
the VR-Editor can envisage.

It has the standard FLAIR ‘type’, 
namely ‘opening’; and a 
pressure coefficient allowing air 
to enter or leave.

This can be achieved as shown here.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
how buoyancy is represented

The interaction of the force of gravity with the density variations caused by  
temperature changes can be introduced by way of a buoyancy object.

Here 9.81 is the gravitational acceleration, rho1 is the reference density, exttem
is the external temperature (15 degrees Celsius) and tem1 is the local 
temperature of the gas.

In the present example however, the practice of i201 is emulated by way of a source 
of vertical-direction momentum,  i.e. W1, the z-direction velocity.
This is treated as an attribute of the domain, because gravity acts everywhere.

The formula can be recognised as expressing the ‘Boussinesq approximation’.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways.
Modifying the buoyancy object

The Boussinesq formula is accurate only when the temperature variations are
small compared with the absolute temperature. For flames, a more appropriate 
formula for the w1-source, to be typed into the box, is that shown below.

Extrho is the external density and rho1 is the local density, which of course must 
be calculated appropriately.
If the ‘hot-air’ combustion model of library case i201 is retained, the appropriate 
formula is the Ideal-Gas Law, summoned in Prelude by a few mouse clicks, thus



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways:
attributes of the fire object

The fire object is represented in the same manner as in library case i201, namely as 
a fixed-flux heat source of magnitude ‘fireflux’ which has been set as 70 kilowatts. 

However, some specialists believe that the true heat input of a fire can never be 
fixed; for it must fall to zero when the adiabatic combustion temperature (e.g. 2000 
degrees) is reached, signifying that all the oxygen has been consumed.  

This is easily expressed by typing not fireflux but fireflux*(1-tem1/2000).
PRELUDE allows this; and the PHOENICS solver will act accordingly. The 
following image shows what will appear on the screen.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
the need for new variables

The just-described device for limiting the attainable temperature is certainly an 
advance over the fixed-heat-flux practice.

However to represent combustion processes more realistically, it is necessary to 
calculate the state of the gas mixture in more detail; and this means solving for 
more variables.

PRELUDE allows these decisions and their consequences to be expressed in 
a simple manner.

The variables which are solved by default in the roomfire Gateway have already 
been seen. Those solved are: P1, TEM1, U1, V1, W1, KE and EP; while those 
auxiliary variables which are only stored are: ENUT and EPKE.

A more complete representation of combustion conventionally needs also:
the FUEL mass fraction, a measure of the fuel/air ratio MIXF, and the enthalpy H1.

Which are to be solved and which only stored as auxiliary variables depends on 
further decisions as to whether:
1.  the ‘mixed-is-burned’ presumption is true or false; and
2.  the flow is or is not presumed to be without heat loss to the solid surroundings.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
adding new variables

Adding new variables is easy with PRELUDE.

If the object ‘variables’ is selected, by clicking on 
its name in the tree, and then the red-tick attributes 
icon is clicked, an ‘add a variable’ opportunity is 
provided.

Whatever the answer, PRELUDE provides an easy 
means of  expressing it, as the next slide shows.

The next question to consider is: which should be 
solved-for variables and which stored-only? 

Typing into the white box H1, MIXF and FUEL, 
and clicking OK after each, increases the 
contents of the object tree as shown on the 
right: 
the desired variables have been added (and 
RHO1 also, so that density can vary).



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
solved-for or stored-only variables

On the right is the  menu which is 
offered when FUEL is selected and its 
attributes (red-tick box) are called for.

The option ‘store’ has been selected, 
because the simplest combustion model 
will be chosen first, embodying the 
‘mixed-is-burned’ presumption.

That model needs 
however that MIXF 
should be both 
stored and solved. 
That choice is 
shown on the right.

More choices are also shown, namely that the ‘whole-field’ method of solution is 
to be chosen, that zero and unity shall be the minimum and maximum values 
which MIXF is allowed to attain, and that its initial value shall be zero.

Such settings, commonly set via the VR-Editor, can be set via PRELUDE menus; 
but there is no need; for Gateways are provided with acceptable defaults.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

PRELUDE and its Gateways;
the choice of combustion model

4. Reaction-rate-limited; non-adiabatic.

This is like 3, but with FUEL also solved for and influencing H1.

The four combustion models which it is especially appropriate to introduce are:
1.  Mixed-is-burned; adiabatic.
For this, one solves only for MIXF, and stores FUEL, H1 and TEM1 which can be 
deduced from it.
2. Reaction-rate-limited; adiabatic
For this, one solves for MIXF and FUEL and stores H1 and TEM1 which can be 
deduced from them.
3. Mixed is burned; non-adiabatic.

For this, one solves for MIXF and TEM1, and stores FUEL and H1.

FUEL can be deduced from MIXF;  and  so can H1, which must however now be 
interpreted as the enthalpy which would prevail if the flow were adiabatic.

From H1 one can deduce TEM1_adiabatic which it is also useful to store; then the
TEM1 for which one solves has the significance of the actual temperature minus 
TEM1_adiabatic.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Relational data-input to PHOENICS:
interim remarks

How PRELUDE facilitates the introduction of the various combustion 
models must be left to another presentation.

Nevertheless …

• but PRELUDE surpasses that provision by permitting more-complex 
relationships and supplying as much interactivity as is needed for 
each particular ‘Gateway’.

• this is now provided, to some extent, by the PHOENICS VR-Editor in 
‘protected mode’, which permits the use of all the features (declarations, 
logic, screen-keyboard interaction, file-handling, etc) of the years-old 
Advanced PHOENICS Input Language;

The limited aims of this presentation have been to explain and 
exemplify that:

• the ability to enter relational data is an indispensable requirement  for a 
modern CFD code;



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Relational data-input to PHOENICS:
what can be done without PRELUDE

… lest attention to PRELUDE overshadow what can be done 
without it, a hydrodynamic example will be discussed.

This concerns flow past objects in a wind tunnel, and how its 
investigation is facilitated by the VR-Editor in protected mode.

Here is an example of what 
will be shown:  two spheres, 
one behind the other.

This might be an exercise given to students, whose attention is 
to be focussed on just those aspects which their professor
has been lecturing upon.

The focussing feature makes PHOENICS a useful teaching toolteaching tool.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
Input File Library Case 807

The Q1 file can be accessed by clicking here.
Like all library files, it can be loaded into the VR-Editor; then the 
users can make any desired change of input data.

But students, like most 
of us, require 
guidance: helpful 
signposts;

The PHOENICS Input Language allows teachers to provide these.

PHOENICS specialists in a company can do the same for their 
design-department colleagues who then, too, can ‘do CFD’.

but not too many of 
them!



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
Input File Library Case 807 (continued)

In the case 807 Q1 is written: “Provision is made for: 
1. Solving for only one quarter of the domain; this is allowed, 

by reason of symmetry, and desirable for economy and 
accuracy.”

This means choosing between 
this ‘wholly-inside’ situation  or  this ‘quarterquarter--insideinside’ one:

PHOENICS allows both (and many more);  but the 
Q1 authorQ1 author made just these two easily accessible.

PIL 
empowers!



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
Input File Library Case 807 (continued)

How did the Q1 author do it? By declaring and setting the
variable: ‘quarter’ (and finegrid and reyno) in the Q1 thus:

SAVE25BEGIN 
declarations and settings 
boolean(quarter,finegrid) 
real(reyno) 
quarter = t ; finegrid= t ; reyno=40

Then, lower down in the Q1 are to be found:

… ! Set positions and sizes for quarter=f

If(quarter) then

….                    ! Modify positions and sizes

endif
Reminder: in PIL, t means true, f means false.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
Setting positions and sizes

In unprotected mode, the editor accepts sizes and positions for 
each object in a single scenario and records them as numbers. 
That’s OK.
In protected mode, users can create a range of scenarios and can 
record sizes and positions as relationships; which is much better.

More freedom demands more thought: e.g. which shall be the key 
parameters? Which the derived ones?

The case-807 author chose diam1, diam2 and gap as keys, thus:

diam1 diam2gap

These can be used as parameters in a systematic study of 
what influences the flow, the drag, the accuracy, etc.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
Setting sizes and positions in the Q1

Here are some of the lines which the 807-author wrote in the Q1: 
declarations 

real(diam1,diam2,gap)
real(xpos1,ypos1,zpos1,xsiz1,ysiz1,zsiz1,dist)
real(xpos2,ypos2,zpos2,xsiz2,ysiz2,zsiz2)
real(xposg1,yposg1,zposg1,xsizg1,ysizg1,zsizg1)
real(xposg2,yposg2,zposg2,xsizg2,ysizg2,zsizg2)    

settings
diam1=2.0; diam2=1.0; gap=2.44
xulast=2.0*diam1; yvlast= 2.0*diam1; zwlast= 5.0*diam1
xpos1=diam1*0.5; ypos1=diam1*0.5; zpos1=1.11*diam1
xsiz1=diam1; ysiz1=diam1; zsiz1=diam1 etc

Tedious and mechanical! but written once only.

Thereafter innumerable runs result from changing one or more of 
these numbers. Systematic studies can begin.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
A few results: the effect of ‘finegrid=t’

It is interesting to 
compare the solutions 
with and without the 
fine grids. First for the 
full domain.

The solution without 
the fine grid is shown 
here.

Although qualitatively 
similar, the differences 
show that the finer grid 
was indeed needed.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
A few results: the effect of ‘quarter=t’

And now the same 
comparison for the 
quarter domain.

The solution without 
the fine grid is shown 
here.

Although the maximum 
velocities are closer, the 
contours show at least a 
display flaw at the base.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
A closer look at the solution

In all these computations, the PHOENICS variable PARSOL = t. 
This means that the mass- and momentum-conservation 
equations for the ‘cut cells’ at the sphere surface were given 
special treatment. 

The smoothness of contours there needs to be examined.

The contours of 
pressure
are shown here.
Their smoothness is 
very good despite the 
fact that the grid cells 
are not extremely small.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
A closer look at the solution

The same is true for any of the computed 
variables. Here are shown contours for :

• stagnation pressure, 

• y-direction velocity and 

• x-direction velocity.

All are as smooth as can reasonably be 
desired.

PARSOL, because it completely 
obviates the tiresome grid-generation 
problems which beset other codes, is 
regarded by users of PHOENICS as one 
of its best features



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

The flow-past-spheres example:
remarks about the parametric study

This simple study would have been difficult without use of the 
parameterised Q1, now permitted by the protected mode.
Users’ labour can be still further reduced by using the 
PHOENICS ‘multi-run’ capability (i.e. RUN(1, any number)), by 
introducing into the Q1 such sequences as:

if(irun.eq.1) then
quarter = t
finegrid=f
endif
if(irun.eq.2) then
quarter = t
finegrid=t
Endif

etcetera

In this way, PHOENICS can be set to work 
for a complete weekend, and to present  
comprehensive results on Monday morning.

Reynolds number, diameter ratio, grid-
refinement factors, iteration numbers and  
other influences can be varied run-by-run.

Interactive use of the VR Editor is OK 
for making single runs, but…
research requires parameterised Q1s.



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

Relational data-input to PHOENICS;
concluding remarks

In 2008, significant advances have been made in the ability of 
PHOENICS to accept relations rather than single settings as input.
Two developments have  effected this: 

1. The protected mode of satellite operation, and

2. The pre-pre-processor PRELUDE.
Their advantage is similar in nature to that of the Excel spread-sheet 
over the hand-calculator. 
Teachers can use the facility to focus the attention of their students.
Parameterised Q1s can be used by those without time or patience to 
learn to interact with the VR-Editor.
Research-minded users of PHOENICS can now proceed faster.

The end



Relational
input

PH
O

EN
IC

S 
U

se
r M

ee
tin

gs
PA

R
IS

, 2
00

8

How to learn about PRELUDE 
and its Gateways

The top menu bar of PRELUDE 
contains a ‘help’ button. Clicking 
on it will evoke a drop-down 
menu, containing the names of 
the PRELUDE tutorials which are
present on the machine which is being used, which will probably include:

• begin1, a long tutorial which explains all the main features of PRELUDE;

• vwt1, which explains how to use the Virtual-Wind-Tunnel; and

• oneroom, which concerns simulation of the flow of heat and air in a    
ventilated room.

Each tutorial is contained in an html file which users are invited to read by 
means of a browser in one window while PRELUDE is open in another 
window.

There is also a document regarding PRELUDE, its purpose and its 
capabilities, which can be viewed here.


