Encyclopaedia Index
 TALK=F;RUN( 1, 1)

TEXT( Library case Y620:  HEXAGON 2D-SFT ANALYSIS  FOR A MODEL HEAT EXCHANGER

  >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    PLANT information :
     * Data input groups used: 9, 13, 19
     * Ground groups planted : 9, 13, 19-6
     * Headings used  : PRPT??,
     * Functions used : None
     * Commands used  : REGION
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    ===========================================================
            Whole domain settings
    ===========================================================
REAL(U1IN,LENGTH,HIGHT);U1IN=1.0;LENGTH=2.6;HIGHT=3.2
GRDPWR(X,26,LENGTH,1.);GRDPWR(Y,32,HIGHT,1.)
STORE(EPOR,NPOR)
STORE(PRPS,DEN1,VISL,MARK)
SOLVE(P1,U1,V1,H1)
NAME(H1)=TEMP
TERMS(TEMP,N,Y,Y,N,Y,N)
+  SOLVE(TEM1)
+  SOLUTN(TEM1,Y,Y,Y,N,N,Y)
+  TERMS(TEM1,N,Y,Y,Y,Y,Y)
+  FIINIT(TEM1)=0.
+  PRNDTL(TEM1)=CONDFILE
INIADD=F
PRNDTL(TEMP)=.702
FIINIT(U1)=U1IN
LSWEEP=1500
RESFAC=1.E-8
RELAX(P1,LINRLX,0.25)
RELAX(U1,FALSDT,.075);RELAX(V1,FALSDT,.075)
RELAX(TEM1,FALSDT,0.1)
IXMON=18;IYMON=5;NXPRIN=1;NYPRIN=1
TSTSWP=-1
NAMSAT=MOSG

    ===========================================================
       Sub-domain organization
    ===========================================================
    **  Provide the MARK distribution as a marker to
        distingish:
          header-flow domain        : MARK=1,
          tube-side-flow domain     : MARK=2
          shell-side-flow domain    : MARK=3
          header thermal domain     : MARK=4
          shell-side-thermal domain : MARK=5 and
          tube-wall-thermal domain  : MARK=100
    **  Provide the PRPS distribution for :
                shell material      : PRPS=111,
                tubesheet material  : PRPS=103  and
                tube wall material  : PRPS=100
FIINIT(PRPS)=111.
INTEGER(NNN); NNN=12; IG(1)=NNN

PATCH(BACGRND,INIVAL,12,25,1,31,1,NZ,1,1)
INIT( BACGRND,PRPS, 0.000E+00, 111.)

PATCH(HEADSIDE,INIVAL,1,10,2.*NNN+1,NY,1,NZ,1,1)
INIT( HEADSIDE,MARK, 0.000E+00, 1.)
+     INIT( HEADSIDE,PRPS, 0.000E+00, 0.)

PATCH(TUBESIDE,INIVAL,1,10,NNN+1,24,1,NZ,1,1)
INIT( TUBESIDE,MARK, 0.000E+00, 2.)
+     INIT( TUBESIDE,PRPS, 0.000E+00, 0.)

PATCH(SHELSIDE,INIVAL,1,10,1,NNN,1,NZ,1,1)
INIT( SHELSIDE,MARK, 0.000E+00, 3.)
+     INIT( SHELSIDE,PRPS, 0.000E+00, 0.)

PATCH(TUBSHEET,INIVAL,11,26,19,21,1,NZ,1,1)
INIT( TUBSHEET,PRPS, 0.000E+00, 103.)

PATCH(ADDHEAD,INIVAL,14,23,22,29,1,NZ,1,1)
INIT( ADDHEAD,PRPS, 0.000E+00, 0.)
INIT( ADDHEAD,MARK, 0.000E+00, 4.)

PATCH(ADDSHELL,INIVAL,14,23,7,18,1,NZ,1,1)
INIT( ADDSHELL,PRPS, 0.000E+00, 0.)
INIT( ADDSHELL,MARK, 0.000E+00, 5.)

PATCH(TUBEWALL,INIVAL,16,21,9,18,1,NZ,1,1)
INIT( TUBEWALL,PRPS, 0.000E+00, 100.)
INIT( TUBEWALL,MARK, 0.000E+00, 100.)

PATCH(SUPOR1,INIVAL,11,13,1,3,1,NZ,1,1)
INIT( SUPOR1,PRPS, 0.000E+00, 0.)

PATCH(SUPOR2,INIVAL,17,20,1,3,1,NZ,1,1)
INIT( SUPOR2,PRPS, 0.000E+00, 0.)

PATCH(SUPOR3,INIVAL,24,26,1,3,1,NZ,1,1)
INIT( SUPOR3,PRPS, 0.000E+00, 0.)

PATCH(WESLAYER,INIVAL,11,11,1,32,1,NZ,1,1)
INIT( WESLAYER,PRPS, 0.000E+00, 0.0)

PATCH(EASLAYER,INIVAL,26,26,1,32,1,NZ,1,1)
INIT( EASLAYER,PRPS, 0.000E+00, 0.0)

PATCH(NORLAYER,INIVAL,11,26,32,32,1,NZ,1,1)
INIT( NORLAYER,PRPS, 0.000E+00, 0.0)

    ** Separate tube-fluid and shel-fluid sub-domains.
CONPOR(0.0,NORTH,1,10,NNN,NNN,1,NZ)
    ** Separate thermal-fluid and stress analysis sub-domains.
CONPOR(0.0,EAST,10,10,1,NY,1,NZ)
    ** Provide tube bank porosities.
CONPOR(0.0,EAST,5,5,18,NY,1,NZ)
CONPOR(0.0,NORTH,1,7,8,8,1,NZ)
CONPOR(0.0,NORTH,4,10,4,4,1,NZ)
+  CONPOR(0.5,NORTH,2,9,NNN+1,24,1,NZ)
+  CONPOR(0.5,EAST, 2,9,NNN+2,24,1,NZ)
    ** Provide inserts by way of blockages to
       simulate header dividing plate, U-turnes,
       and baffles.
CONPOR(0.0,NORTH,5,6,16,16,1,NZ)
CONPOR(0.0,NORTH,4,7,15,15,1,NZ)
CONPOR(0.0,NORTH,3,8,14,14,1,NZ)
CONPOR(0.0,NORTH,2,9,NNN+1,NNN+1,1,NZ)
+  CONPOR(0.0,EAST,1,1,14,24,1,NZ)
+  CONPOR(0.0,EAST,2,2,15,24,1,NZ)
+  CONPOR(0.0,EAST,3,3,16,24,1,NZ)
+  CONPOR(0.0,EAST,4,4,17,24,1,NZ)
+  CONPOR(0.0,EAST,5,5,18,24,1,NZ)
+  CONPOR(0.0,EAST,6,6,17,24,1,NZ)
+  CONPOR(0.0,EAST,7,7,16,24,1,NZ)
+  CONPOR(0.0,EAST,8,8,15,24,1,NZ)
+  CONPOR(0.0,EAST,9,9,14,24,1,NZ)

    ===========================================================
       Property settings
    ===========================================================
    ** Settings for the calculation of wall
       distances in the header and in baffled
       shell side.
DISWAL
+  WALL(NL1N,NORTH,1,7,8,8,1,NZ,1,1)
+  COVAL(NL1N,LTLS,1.,0.0)
+  WALL(NL1S,SOUTH,1,7,9,9,1,NZ,1,1)
+  COVAL(NL1S,LTLS,1.,0.0)
WALL(NL2N,NORTH,4,10,4,4,1,NZ,1,1)
COVAL(NL2N,LTLS,1.,0.0)
WALL(NL2S,SOUTH,4,10,5,5,1,NZ,1,1)
COVAL(NL2S,LTLS,1.,0.0)
+  WALL(NL3N,NORTH,1,10,12,12,1,NZ,1,1)
+  COVAL(NL3N,LTLS,1.,0.0)
WALL(NL3S,SOUTH,1,10,1,1,1,NZ,1,1)
COVAL(NL3S,LTLS,1.,0.0)
+  WALL(NL4W1,WEST,1,1,1,9,1,NZ,1,1)
+  COVAL(NL4W1,LTLS,1.,0.0)
WALL(NL4W2,WEST,1,1,12,12,1,NZ,1,1)
COVAL(NL4W2,LTLS,1.,0.0)
+  WALL(NL4E1,EAST,10,10,1,1,1,NZ,1,1)
+  COVAL(NL4E1,LTLS,1.,0.0)
WALL(NL4E1,EAST,10,10,4,12,1,NZ,1,1)
COVAL(NL4E1,LTLS,1.,0.0)
+  WALL(NL5N1,NORTH,1,10,NY,NY,1,NZ,1,1)
+  COVAL(NL5N1,LTLS,1.,0.0)
WALL(NL5W1,WEST,1,1,25,28,1,NZ,1,1)
COVAL(NL5W1,LTLS,1.,0.0)
+  WALL(NL5W2,WEST,1,1,31,32,1,NZ,1,1)
+  COVAL(NL5W2,LTLS,1.,0.0)
WALL(NL5W3,WEST,6,6,25,ny,1,NZ,1,1)
COVAL(NL5W3,LTLS,1.,0.0)
+  WALL(NL5E1,EAST,10,10,25,28,1,NZ,1,1)
+  COVAL(NL5E1,LTLS,1.,0.0)
WALL(NL5E2,EAST,10,10,31,32,1,NZ,1,1)
COVAL(NL5E2,LTLS,1.,0.0)
+  WALL(NL5E3,EAST,5,5,25,ny,1,NZ,1,1)
+  COVAL(NL5E3,LTLS,1.,0.0)
PATCH(FIXL,CELL,1,10,13,24,1,NZ,1,1)
COVAL(FIXL,LTLS,FIXVAL,0.)
  **  Set the fluid densities:
               Header    : water
               Tube side : water
               Shell side: air
RHO1=GRND
    DEN1=1000.
   REGION() 1
    DEN1=1000.
   REGION() 2
    DEN1=1.2
   REGION() 3
    >>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
     The above three statements, followed by the pointer RHO1=GRND and
     parameterized REGION commands, instruct PLANT to make the density
     distributions as the distribition of in-cell marker values
     dictates.
    <<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
   **   Set fluid viscosities
               Header    : effective viscosity proprtional to
                           local velocity magnitude and distance to
                           nearest wall.
               Tube side : Constant=0.01
               Shell side: as for header
ENUL=GRND
    VISL=1.*SQRT(U1**2+V1**2)*WDIS
   REGION() 1
    VISL=0.01
   REGION() 2
    VISL=1.*SQRT(U1**2+V1**2)*WDIS
   REGION() 3
    >>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
     The above three statements do the same for viscosities as previous
     three has done for densities. Note that viscosities in the domains
     marked 1 and 3 are made proprtional to the products of local
     velocity magnitudes and distances to the nearest wall.
    <<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

    ===========================================================
       Thermal-fluid conditions settings
    ===========================================================
   ** Set the inflow and outflow conditions
    * West boundary; tube-fluid inlet ;
                   2 cells in header west wall
PATCH(INTUBE,WEST,1,1,29,30,1,NZ,1,1)
COVAL(INTUBE,P1,FIXFLU,1000.*U1IN)
COVAL(INTUBE,U1,ONLYMS,U1IN)
COVAL(INTUBE,TEMP,ONLYMS,0.0)
    * East boundary; tube-fluid outlet ;
                   2 cells in header east wall
PATCH(OUTUBE,EAST,10,10,29,30,1,NZ,1,1)
COVAL(OUTUBE,P1,1000.,0.)
    * East boundary; shell-fluid inlet ;
                   2 cells in bottom of shell west wall
PATCH(INSHEL,EAST,10,10,2,3,1,NZ,1,1)
COVAL(INSHEL,P1,FIXFLU,1.2*U1IN)
COVAL(INSHEL,U1,ONLYMS,-U1IN)
COVAL(INSHEL,TEMP,ONLYMS,1.0)
    * West boundary; shell-fluid outlet ;
                   2 cells in header east wall
PATCH(OUSHEL,WEST,1,1,10,11,1,NZ,1,1)
COVAL(OUSHEL,P1,1000.,0.)
   **  Non-linear resistance to tube-fluid flow exerted
       by tubes, throughout the U-tube array.
PATCH(SS002U,PHASEM,1,10,1,NY,1,NZ,1,1)
   CO=.2*(U1**2+V1**2)**0.15
COVAL(SS002U,U1,GRND,0.0)
   CO=.2*(U1**2+V1**2)**0.15
COVAL(SS002U,V1,GRND,0.0)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    Momentum sinks are introduced by above formulae over all cells having
    marker value appearing in the number of PATCH name, 002.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
   **  Non-linear resistance to shell-fluid flow exerted
       by tubes, throughout the shell-side.
PATCH(SS003H,PHASEM,1,10,1,NY,1,NZ,1,1)
   CO=2.2*(U1**2+V1**2)**0.25
COVAL(SS003H,U1,GRND,0.0)
   CO=2.2*(U1**2+V1**2)**0.25
COVAL(SS003H,V1,GRND,0.0)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    Momentum sinks are introduced by above formulae over all cells having
    marker value appearing in the number of PATCH name, 003.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    **  Tube fluid heat transfer coefficient
STORE(ALF2);FIINIT(ALF2)=0.0
    ALF2=1.+1.*SQRT(U1**2+V1**2+TINY)
   REGION() 2
    **  Shell fluid heat transfer coefficient
STORE(ALF3);FIINIT(ALF3)=0.0
    ALF3=1.+3.*SQRT(U1**2+V1**2+TINY)
   REGION() 3
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    Tube and shell fluid heat transfer coefficients, ALF2 and ALF3, are
    made dependent on local velocity magnitudes over the REGIONs marked
    2 and 3 correspondingly.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    **  Overall heat transfer coefficient
STORE(HTC);FIINIT(HTC)=0.0
    HTC=1./(1/ALF2+1/ALF3[,-IG(1),])
   REGION() 2
    HTC=1./(1/ALF3 +1/ALF2[,+IG(1),])
   REGION() 3
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    Overall heat transfer coefficient, HTC, distribution are calculated
    by reference to appropriate local heat transfer coefficients in
    REGIONs 2 and 3.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    **  Heat-exchange with shell-fluid, throughout the shell.
PATCH(SS002T,PHASEM,1,NX,1,NY,1,NZ,1,1)
   CO =HTC
   VAL=TEMP[,-IG(1),]
COVAL(SS002T,TEMP,GRND,GRND)
    **  Heat-exchange with tube-fluid, throughout the shell.
PATCH(SS003S,PHASEM,1,NX,1,NY,1,NZ,1,1)
   CO =HTC
   VAL=TEMP[,+IG(1),]
COVAL(SS003S,TEMP,GRND,GRND)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    The PATCH names indicate the sub-domain cell markers , 2 and 3, over
    which the heat-exchange sources are applied. The indicial operations
    for TEMP are arranged in appropriate manner.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

    ===========================================================
       Data preparation for conjugate and stress analysis
    ===========================================================
    ** Transfer shell fluid temperatures
PATCH(SS005T,CELL,1,NX,1,NY,1,NZ,1,1)
   CO=1.e10
   VAL=TEMP[-13,-6,]
COVAL(SS005T,TEM1,GRND,GRND)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    The temperatures of the shell fluid, TEMP, are transfered into the
    stress analysis sub-domain, MARK=5, to be used as TEM1.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    **  Tube-wall temperature
PATCH(SS100T,CELL,1,NX,1,NY,1,NZ,1,1)
   CO=1.e10
   VAL=(ALF2[-13,+6,]*TEMP[-13,+6,]+$
                ALF3[-13,-6,]*TEMP[-13,-6,])$
          /(ALF2[-13,+6,]+ALF3[-13,-6,]+TINY)
COVAL(SS100T,TEM1,GRND,GRND)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    Here the tube wall temperatures, TEM1, are calculated in the
    sub-domain indicated by MARK=100 as PATCH name number specifies.
    TEM1s are computed via shell and tube fluid temperatures and heat
    transfer coefficients transfered from cooresponding sub-domains as
    indicial numbers show.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    ** Transfer the header temperatures
PATCH(SS004T,CELL,1,NX,1,NY,1,NZ,1,1)
   CO=1.e10
   VAL=TEMP[-13,+3,]
COVAL(SS004T,TEM1,GRND,GRND)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    The temperatures of the header tube fluid, TEMP, are transfered into
    the stress analysis sub-domain, MARK=4, to be used as TEM1.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

    ===========================================================
       Stress analysis
    ===========================================================
  ** General settings
BOOLEAN(CALSTR)
REAL(EXCOLI,EXCOC1,EXCOC2,STIFFN,STIFC1,STIFC2,DSTRSW,DSTRSE,DSTRSS)
REAL(POISSN)
STRA=T;CALSTR=T
STIFFN=2.e11
STIFC1=0.0;STIFC2=0.0
EXCOLI=1.e-03
EXCOC1=0.0;EXCOC2=0.0
POISSN=.3333
ISOLX=0;ISOLY=0;ISOLZ=0
  ** Zero direct-stress condition on bottom shell side
   * West part
PATCH(BASEW,NORTH,12,13,3,3,1,NZ,1,LSTEP)
COVAL(BASEW,V1,FIXFLU,0.0)
   * Middle part
PATCH(BASEM,NORTH,17,20,3,3,1,NZ,1,LSTEP)
COVAL(BASEM,V1,FIXFLU,0.0)
   * East part
PATCH(BASEE,NORTH,24,25,3,3,1,NZ,1,LSTEP)
COVAL(BASEE,V1,FIXFLU,0.0)
  ** Zero direct-stress condition on the supports sides
   *  1st support west side
PATCH(SUP1W,EAST,13,13,1,3,1,NZ,1,LSTEP)
COVAL(SUP1W,U1,FIXFLU,0.0)
   *  1st support east side
PATCH(SUP1E,EAST,16,16,1,3,1,NZ,1,LSTEP)
COVAL(SUP1E,U1,FIXFLU,0.0)
   *  2nd support east side
PATCH(SUP2W,EAST,20,20,1,3,1,NZ,1,LSTEP)
COVAL(SUP2W,U1,FIXFLU,0.0)
   *  2nd support west side
PATCH(SUP2E,EAST,23,23,1,3,1,NZ,1,LSTEP)
COVAL(SUP2E,U1,FIXFLU,0.0)
  ** Zero direct-stresses on outer shell sides
   * West side
PATCH(OUWW,EAST,11,11,4,31,1,NZ,1,LSTEP)
COVAL(OUWW,U1,FIXFLU,0.0)
   * East side
PATCH(OUWE,EAST,25,25,4,31,1,NZ,1,LSTEP)
COVAL(OUWE,U1,FIXFLU,0.0)
   * North side
PATCH(OUWN,NORTH,12,25,31,31,1,NZ,1,LSTEP)
COVAL(OUWN,V1,FIXFLU,0.0)
  ** Zero direct-stresses on inner header sides
   * North side
PATCH(HEDWN,NORTH,14,23,29,29,1,NZ,1,LSTEP)
COVAL(HEDWN,V1,FIXFLU,0.0)
   * South side
PATCH(HEDWS,NORTH,14,23,21,21,1,NZ,1,LSTEP)
COVAL(HEDWS,V1,FIXFLU,0.0)
   * West side
PATCH(HEDWW,EAST,13,13,22,29,1,NZ,1,LSTEP)
COVAL(HEDWW,U1,FIXFLU,0.0)
   * East side
PATCH(HEDWE,EAST,23,23,22,29,1,NZ,1,LSTEP)
COVAL(HEDWE,U1,FIXFLU,0.0)
  ** Zero direct-stresses inner shell sides
   * North-west side
PATCH(SHWNW,NORTH,14,15,18,18,1,NZ,1,LSTEP)
COVAL(SHWNW,V1,FIXFLU,0.0)
   * North-east side
PATCH(SHWNE,NORTH,22,23,18,18,1,NZ,1,LSTEP)
COVAL(SHWNE,V1,FIXFLU,0.0)
   * South side
PATCH(SHWS,NORTH,14,23,6,6,1,NZ,1,LSTEP)
COVAL(SHWS,V1,FIXFLU,0.0)
   * East side
PATCH(SHWW,EAST,13,13,7,18,1,NZ,1,LSTEP)
COVAL(SHWW,U1,FIXFLU,0.0)
   * West side
PATCH(SHWE,EAST,23,23,7,18,1,NZ,1,LSTEP)
COVAL(SHWE,U1,FIXFLU,0.0)
  ** Zero direct-stresses on tube bundle
   * South side
PATCH(TUBS,NORTH,16,21,8,8,1,NZ,1,LSTEP)
COVAL(TUBS,V1,FIXFLU,0.0)
   * West side
PATCH(TUBW,EAST,15,15,9,18,1,NZ,1,LSTEP)
COVAL(TUBW,U1,FIXFLU,0.0)
   * East side
PATCH(TUBE,EAST,21,21,9,18,1,NZ,1,LSTEP)
COVAL(TUBE,U1,FIXFLU,0.0)
  ** Fix displacement at tubesheet west side
PATCH(FIXW,EAST,11,11,19,21,1,NZ,1,LSTEP)
COVAL(FIXW,U1,FIXVAL,0.0)
  ** Fix displacement at the tubesheet east side
PATCH(FIXE,EAST,25,25,19,21,1,NZ,1,LSTEP)
COVAL(FIXE,U1,FIXVAL,0.0)
  PIL fragment providing settings for stress and strain
  post-processing
+    STORE(EPSY,STRY)
+    OUTPUT(EPSY,Y,N,N,N,N,N) ; OUTPUT(STRY,Y,N,N,N,N,N)
+    FIINIT(EPSY)=0.0;FIINIT(STRY)=0.0
+    STORE(EPSX,STRX)
+    OUTPUT(EPSX,Y,N,N,N,N,N) ; OUTPUT(STRX,Y,N,N,N,N,N)
+    FIINIT(EPSX)=0.0;FIINIT(STRX)=0.0
+    STORE(EPST) ; OUTPUT(EPST,Y,N,N,N,N,N);FIINIT(EPST)=0.0

SPEDAT(SET,STRAIN,CALSTR,L,:CALSTR:)
SPEDAT(SET,STRAIN,POISSN,R,:POISSN:)
SPEDAT(SET,STRAIN,EXCOLI,R,:EXCOLI:)
SPEDAT(SET,STRAIN,EXCOC1,R,:EXCOC1:)
SPEDAT(SET,STRAIN,EXCOC2,R,:EXCOC2:)
SPEDAT(SET,STRAIN,STIFFN,R,:STIFFN:)
SPEDAT(SET,STRAIN,STIFC1,R,:STIFC1:)
SPEDAT(SET,STRAIN,STIFC2,R,:STIFC2:)

    ===========================================================
       Output data processing
    ===========================================================
     ** Tube fluid velocities transfer
STORE(UU1,VV1)
    UU1=U1[-13,+3,]
   REGION(14,23,22,29,1,NZ)
    VV1=V1[-13,+3,]
   REGION(14,23,22,29,1,NZ)
    UU1=U1[-13,+6,]
   REGION(14,23,7,18,1,NZ)
    VV1=V1[-13,+6,]
   REGION(14,23,7,18,1,NZ)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    Tube fluid velocities are transfered from where they have been
    calculated for easy visualisation.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
     ** Shell fluid velocities transfer
STORE(U2,V2)
    U2=U1[-13,-6,]
   REGION(14,23,7,18,1,NZ)
    V2=V1[-13,-6,]
   REGION(14,23,7,18,1,NZ)
  >>>>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    Shell fluid velocities are transfered from where they have been
    calculated for easy visualisation.
  <<<<<<<<<<<<<<<<<<<<<<<<<  Comment ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

  PHOTON USE
     p



     set prop off
     gr ou z 1 x 12 25 y 19 21
     gr ou z 1 x 12 25 y 4 18
     gr ou z 1 x 14 23 y 7 18
     gr ou z 1 x 12 25 y 22 31
     gr ou z 1 x 14 23 y 22 29
     *gr ou z 1 x 11 11 y 25 28
     *gr ou z 1 x 26 26 y 25 28
     gr z 1 x 11 11 y 20 21
     gr z 1 x 26 26 y 20 21
     *gr ou z 1 x 26 26 y 7 10
     *gr ou z 1 x 11 11 y 15 18
     gr ou z 1 x 14 16 y 1 3
     gr ou z 1 x 21 23 y 1 3
     gr ou z 1 x 11 11 y 16 17
     gr ou x 11 11 y 15 18
     gr ou z 1 x 26 26 y 8 9
     gr ou x 27 y 7 10
     gr ou z 1 x 11 11 y 26 27
     gr ou x 11 11 y 25 28
     gr ou z 1 x 26 26 y 26 27
     gr ou x 27 y 25 28
     gr ou x 15 15 y 19 21
     gr ou x 16 16 y 19 21
     gr ou x 17 17 y 19 21
     gr ou x 18 18 y 19 21
     gr ou x 19 19 y 19 21
     gr ou x 20 20 y 19 21
     gr ou x 21 21 y 19 21
     gr ou x 22 22 y 19 21
     gr ou x 23 23 y 19 21
     gr ou z 1 x 15 22 y 8 18
     gr ou z 1 x 16 21 y 9 18
     gr ou z 1 x 17 20 y 10 18
     gr ou z 1 x 18 19 y 11 18
     gr ou y 11 11 x 17 23
     gr ou y 15 15 x 14 20
     gr ou x 19 19 y 12 29
     set vec comp uu1 vv1 -
     vec z 1 sh
     set vec comp u2 v2 -
     vec z 1
     msg( Shell and tube fluid velocity vectors
     pause
     vec cl
     red
     set vec comp u1 v1 -
     vec z 1 x 11 m sh
     msg( Thermal displacement vectors in shell and tube bundle
  ENDUSE
STOP