Encyclopaedia Index

Contents

  1. SURFACE-TO-SURFACE RADIATION
  2. Surface-to-Surface Radiation: Introduction (i)
  3. Surface-to-Surface Radiation: Introduction (ii)
  4. Assumptions
  5. Capabilities
  6. Strategy
  7. The energy equation
  8. The heat balance equation
  9. The net radiation flux
  10. The mean convective heat flux (i)
  11. The mean convective heat flux (ii)
  12. The mean conductive heat flux
  13. Determination of the surface temperature
  14. Activation - Essential Q1 settings (i)
  15. Activation - Essential Q1 settings (ii)
  16. Activation - Essential Q1 settings (iii)
  17. Activation - Essential Q1 settings (iv)
  18. Activation - Essential Q1 settings (v)
  19. Activation - Essential Q1 settings (vi)
  20. Calculation of Radiative-exchange or View-factors
  21. Radiative-exchange or View-factor File - RADI.DAT
  22. Radiative-exchange or View-factor File (ii)
  23. Example cases in the library (i)
  24. Example cases in the library (ii)
  25. Concluding Remarks
  26. References

1. Surface-to-Surface Radiation

This article describes the surface-to-surface radiation model which is part of the PHOENICS advanced-radiation-model option.

2. Surface-to-Surface Radiation: Introduction (i)


3. Surface-to-Surface Radiation: Introduction (ii)


4. Assumptions


5. Capabilities


6. Strategy


7. The energy equation


8. The heat balance equation


9. The net radiation flux


10. The mean convective heat flux (i)


11. The mean convective heat flux (ii)


12. The mean conductive heat flux


13. Determination of the surface temperature


14. Activation - Essential Q1 settings (i)


15. Activation - Essential Q1 settings (ii)


16. Activation - Essential Q1 settings (iii)


17. Activation - Essential Q1 settings (iv)


18. Activation - Essential Q1 settings (v)


19. Activation - Essential Q1 settings (vi)


20. Calculation of Radiative-exchange or View-factors


21. Radiative-exchange or View-factor File - RADI.DAT



                    * COMMENT LINE AS HEADER *

     N              - NUMBER OF THERMAL NODES

     GR(1,1) GR(1,2) GR(1,3) GR(1,4) GR(1,5)

     ....... ....... GR(1,J) ....... .......

     ....... GR(1,N)

     GR(2,1) GR(2,2) GR(2,3) GR(2,4) GR(2,5)

     ....... ....... GR(2,J) ....... .......

     ....... GR(2,N)

     .

     .

     GR(I,1) GR(I,2) GR(I,3) GR(I,4) GR(I,5)

     ....... ....... GR(I,J) ....... .......

     ....... GR(I,N)


22. Radiative-exchange or View-factor File (ii)



     .

     .

     GR(N,1) GR(N,2) GR(N,3) GR(N,4) GR(N,5)

     ....... ....... GR(N,J) ....... .......

     ....... GR(N,N)

where GR(I,J) is the radiative-exchange coefficient or view-factor between nodes I and J. The exchange coefficient between the node and itself is always zero. The number of thermal nodes, N, should be written in the format I3.

The exchange coefficients should be written in the format 5(1PE13.6), using the following DO loop:

     

        DO 10 I=1,N

          WRITE (LU,20) (GR(I,J),J=1,N)

     10 CONTINUE

     20 FORMAT (5(1PE13.6))


23. Example cases in the library (i)

RADIATION MODEL EXAMPLES Case no. (Type SEELIB(Rn) or LOAD(Rn) to see or load; n = case no.)

  1. INTERNAL RADIATIVE, CONVECTIVE AND CONDUCTIVE
  2. EXTERNAL LINEAR HEAT TRANSFER 1-D y-direction shell surface 105
  3. EXTERNAL RADIATIVE HEAT TRANSFER
  4. INTERNAL RADIATIVE HEAT TRANSFER WITH CONDUCTION


24. Example cases in the library (ii)

  1. INTERNAL LINEAR AND RADIATIVE HEAT TRANSFER 1-D cartesian y-direction 115

  2. INTERNAL RADIATIVE HEAT TRANSFER WITH CONDUCTION 1-D solid-fluid-solid set-up 116

  3. THIN PLATE 1-D thin plate 118

  4. TRANSIENT 1-D transient 119


25. Concluding Remarks


26. References