

Creating Parameterized Q1 files by means of the
PQ1Editor

By: Alexey Ginevsky, Elena Pankova and Brian Spalding

(last edited on 24.12.15)

Contents
1. Background
1.1 History
1.2 Purpose

2. Creation of P-D-compatible PQ1s
2.1 Ab initio
2.2 From pre-existing PQ1s
2.3 From pre-existing single-instance Q1s

3. Further capabilities

3.1 Automatic creation of scenario

3.2 Multi-scenario SimScene possibility
3.3 Treatment of included files

4. Concluding remarks

1. Background
1.1 History
 From the beginning of PHOENICS in 1981, the file which its users employed for the input
of data has been called Q1, written in the PHOENICS Input Language, PIL; and this language
allows variables to be declared, to be given values, and to be used as parameters in algebraic

and logical expressions. The so-called ‘parameterized Q1s’ (known as PQ1s) were thus input

files for classes of flow simulation, of which particular instances could be selected by
causing the Q1 to include files containing particular sets of values for its parameters.
 Such files had until a few years ago to be created by a text editor; but in the year 2011
PHOENICS-Direct was introduced, as a graphical user interface which allowed its users to
select the parameters by way of easy-to-use menus. The PQ1-plus-PHOENICS-Direct
package became known as a Simulation Scenario, or more recently as an app.
 Included within the package was an intermediary file called scene.xml. This expressed
the parameter-setting content of the PQ1 in a manner that PHOENICS-Direct (P-D from now
on) could understand; and the creator of the PQ1 had in the beginning to create that file too. To
remove that necessity, and its proneness to error, the PQ1Editor was created. This program,
the subject of the present document, facilitates the writing of the PQ1 in a strictly-formatted
manner; and, when that task is complete, automatically creates an entirely compatible
scene.xml. Indeed, if appropriately instructed, it can create also the complete file structure of an
entirely new SimScene.

1.2 Purpose of the present document
 The main purpose of the present document is to explain to the PQ1 creator how to use
the PQ1Editor (Pq1ed, from now on) for the just-mentioned tasks.

It should be understood that PQ1ed may of course be used for editing files of any kind.
When however it is informed that the file loaded into it is to be used as a PHOENICS Input file,
i.e. as a Q1, whether parameterized or not, it displays characters on the screen in special ways.
It uses its built-in knowledge to distinguish active PIL and In-Form statements from each other,

and from settings and from comments, by the selective use of: emboldening, Roman or italic,
and varied colour. For example, a PIL statement is printed in bold font when, because it starts
in the first or second column, it will be accepted as an instruction by the Satellite. When moved
two spaces to the right however, which renders it inactive, its emboldening is removed.

Such distinctions assist the user of PQ1ed to avoid mistakes.

2. Creation of P-D-compatible PQ1

2.1 Ab initio
(a) Declaring the file as a Q1
 When Pq1ed is first opened the following message appears on the screen:

Clicking ‘yes’ causes Pq1ed to activate its above-mentioned Q1-related text-display features.
Also, when the time comes to save the file, its name will be added to a list of Q1files which the
editor maintains in \common\pq1ed\pq1ed.q1s. Had the answer ‘no’ been given, its name would
later be added to the file pq1ed.noq instead

Pq1ed consults these files whenever a file is loaded into it, so that it need not ask users
questions to which the answer is already known.

The user is then free to create the text of the file in whatever way he wishes; but Pq1ed
is ready to minimise his labour, as will now be explained.

(b) The use of pq1ed’s macro feature.

A good way to start the creation of a PQ1 is to enter pq followed by <Ctrl+j>. This will
bring to the screen the following extensive macro, i,e, prepared-in-advance text segment:

<html><head><title>q1.htm</title></head><body><pre>

 PQ1 description

 Title:
Author
Start Date:
 Last editing date:
 Purpose:
Brief description:

 PQ1 Part 1 Declarations and settings

xml-group general
insert declaration and settings below

xml-group geometry
insert declaration and settings below

xml-group variables solved
insert declaration and settings below

xml-group material properties
insert declaration and settings below

xml-group model choices
insert declaration and settings below

xml-group initial condition
insert declaration and settings below

xml-group boundary conditions
insert declaration and settings below

xml-group output settings
insert declaration and settings below

xml-group computational grid
insert declaration and settings below

xml-group other numerical
insert declaration and settings below

xml-end

 PQ1 Part 2 Include Frommenu

INCL(frommenu.htm)

 PQ1 Part 3 Consequential settings

TALK=T;RUN(1,1)
GROUP 1. Run title and other preliminaries
TEXT()
GROUP 2. Transience; time-step specification
steady= t or f
nregt=1
iregt=1;grdpwr(t,lstep,tlast,power)
GROUP 3. X-direction grid specification
nregx=1
iregx=1;grdpwr(x,nx,xulast,power)
GROUP 4. Y-direction grid specification
nregy=1
iregy=1;grdpwr(y,ny,yvlast,power)
GROUP 5. Z-direction grid specification
nregz=1
iregz=1;grdpwr(z,nz,zwlast,power)
GROUP 6. Body-fitted coordinates or grid distortion
GROUP 7. Variables stored, solved & named
GROUP 8. Terms (in differential equations) & devices
GROUP 9. Properties of the medium (or media)
GROUP 10. Inter-phase-transfer processes and properties
GROUP 11. Initialization of variable or porosity fields
GROUP 12. Patch-wise adjustment of terms (in differential equations)
GROUP 13. Boundary conditions and special sources
GROUP 14. Downstream pressure for PARAB=.TRUE.
GROUP 15. Termination of sweeps
GROUP 16. Termination of iterations
GROUP 17. Under-relaxation devices
GROUP 18. Limits on variables or increments to them
GROUP 19. Data communicated by satellite to GROUND
GROUP 20. Preliminary print-out

GROUP 21. Print-out of variables
GROUP 22. Spot-value print-out
GROUP 23. Field print-out and plot control
GROUP 24. Dumps for restarts
GROUP 25. VR-related settings
nogrid=t ! must appear below grdpwr
> DOM, SIZE, xulast, yvlast, zwlast !necessary to activate vre/v

store(prps)
real(posx,posy,posz,sizx,sizy,sizz) ! required declarations ?

> OBJ, NAME, ogeo:izz::ixx:
> OBJ, POSITION, :posx:,:posy:,:posz:
> OBJ, SIZE, xsizobj, ysizobj, zsizobj
> OBJ, GEOMETRY, :ogeo:
>obj, type, blockage
>obj, material,100
>obj, grid, n
> OBJ, ROTATION24, orot
 GROUP 26 Graphical-display macros
STOP
</pre></body></html>

 The above blue-font inclusion is a PQ1 template, into which the PQ1 creator should
supply whatever is appropriate to the now-to-be-created SimScene. He can also delete or
modify any part of it.
 It is divided into three parts. The first contains all the declared parameters and their
default settings. The second calls, from the file ‘frommenu.htm’, whatever different settings the
user may have entered subsequently in an interactive P-D menu session. The third makes all
the consequential settings that constitute the essence of the SimScene which is in question.

Pq1ed provides other helpful macros. Suppose, for example, that the PQ1 creator
wishes to introduce the character variable ‘casename’ into the ‘general’ group of parameters.
Then, if below xml-group general he types ch thus :
ch<Ctrl+j>

there will appear on the screen:
char(?) ! description? = value or, if list,
? = value1 !value2 !value3 !etc

whereupon he may decide to edit this as a list of options, thus:

char(casename) ! name of case
casename= case1 ! case2 ! case3

 What choosing, one or other of these entails, of course depends on what he proposes
to introduce into part 3 of the PQ1.

 Similarly, typing re<Ctrl+j>, in<Ctrl+j>, or bo<Ctrl+j>, will provide the starting points
for declaring and setting real, integer and Boolean (i.e. logical) parameters.

(c) Where macros are stored
 In the folder \phoenics\d_sapps\common\pq1ed, there resides a file called pq1ed.dci,
which contains entries such as:

[ch | character declaration and setting]
char(?) ! description? = value or, if list,
? = value1 !value2 !value3 !etc

and

[pq | PQ1 format]
\phoenics\d_sapps\common\pq1ed\macros\pq.txt

The entries are separated (and must be) by single blank lines.
 The first of the entries produced the above-described response to typing ch<Ctrl+j>.
The second item produced the response to typing pq<Ctrl+j>.
 The two entries differ in that the first is contained within pq1ed.dci itself, whereas, viz.
the PQ1 template, is to be found in pq.txt, which is a file in the \macros\sub-directory.
 Careful inspection, and copying, of these examples, enables pq1ed.dci and in-\macros\
files to be customized. Each PQ1-creator can therefore create precisely the macros which he
needs. Indeed the ‘other uses’ mentioned above include the editing of Fortran or html or other

special-language files which require standardized inputs; for creation and attachment of
appropriate macro files reduces typing time and the frequency of mistakes.

(d) Code completion
 Macros allow both large and small already-prepared text sequences to be easily
brought in and subsequently edited. Another equally valuable service is provided by what is
called the ‘code-completion’ feature of Pq1ed. It is not restricted to, but is currently focused
upon, providing helpful reminders of how PIL statements are properly written. Suppose, for
example, that its user is aware that many In-Form statements begin with the bracket (followed
by ‘stored’, or ‘initial’, or ‘source’, etc., but has forgotten the exact syntax. Then he can type
<Ctrl+space> (
whereafter he sees immediately, in the file which he is editing, the following list:

 Should it be ‘(print ‘ that he has in mind, then he may mouse-click on that line so as to
select it, and then click on <enter>. Immediately will appear, in the file that he is editing

(print of STRING is EXPRESSION)

 Other choices lead to;
(property den1 is FORMULA)

 and to
(source of VAR3 at PNAME is FORMULA) .

 These are reminders of how valid PIL lines are to be written. Here it is to be done by
leaving the lower-case characters intact and replacing the upper-case ones by appropriate
entries.
 Just as macros respond to entries in the file called pq1ed.dci, so code-completion
items respond to those in a file, viz. pq1ed.pil. This too is an ASCII file which is editable by the
user. In it will be found the complete entries relating to PIL lines starting with an open round
bracket, namely:

(make VAR1 is FORMULA) | In-Form's (make
(print of STRING is EXPRESSION) | InForm's (print
(property den1 is FORMULA) | In-Form's (property density
(property enul is FORMULA) | In-Form's (property kinematic viscosity
(property prndtl(VAR) is FORMULA) | In-Form's (property Prandtl number
(source of VAR3 at PNAME is FORMULA) | In-Form's (source
(store1 VAR3 is FORMULA) | In-Form's (store1
(stored VAR3 is FORMULA) | In-Form's (stored

 Comparison of these lines with those just reported as appearing in the file under edit
shows that that the characters to the right of | appear in the boxed to-be-selected list, whereas
the characters to the left of it constitute the needed PIL entries themselves.
 Not all the possible PIL statements appear in pq1ed.pil; and the explanatory words may
be more meaningful to some readers than to others. This is why the customizability of
pq1ed.pil is so welcome. Users can formulate the explanations in their own terms.

Although Pq1ed does what it can to make the PQ1-creator’s task easy, it cannot dictate
its further contents. The content of Part 3 of the PQ1 is for its creator to decide. When his work
is finished, however, pq1ed can be asked to perform a very important task namely the creation
of a complete SimScene allowing the PQ1’s simulation capability to be activated. What this
means is described at the end of section 2.2.

2.2 From pre-existing PQ1s
(a) The task to be performed
 There exist some PQ1s which are entirely satisfactory from the point of view of
providing instructions to SATELLITE, but which cannot be presented to the user via SimScene
menus. An example is core-library case 162, which concerns the release of gas into the
atmosphere from a ruptured pipe-line. It is discussed in detail in the PHOENICS
Encyclopaedia at: /phoenics/d_polis/d_enc/enc_q1.htm#6; and it ante-dates PHOENICS-
Direct.

It does have an interactive-menu system; but only of the hard-to-use ‘readvdu’ kind,
involving questions posed in a pre-set and unchangeable order. The task now to be discussed
is how to enable the PQ1 to generate a SimScene-type menu.

The ‘how?’ question has a simple answer. Re-write declaration and value-setting of the
existing PQ1 in the format displayed at the start of section 2.1 above. This is a mechanical task;
so Pq1ed will in due course be taught to perform it automatically. At the time of writing
(December, 2015), this has in part been accomplished, as is described below in section 3
(Further Capabilities) below. The task to be performed, whether so aided or by human labour
alone, will now be described.

(b) The declaration-and-settings part of case 162
This part of the library case now follows:

 !-------------------------------- declaration

 ! primary parameters, real
real(wallhigh,wallthck,walldist,indist,outdisnt)
real(domhigh,domwide)
real(pipezpos,relhigh,floorco)
real(pipediam,reldiam,relangl,gaspr)
real(windvel,windangl) ! wind parameters
 ! secondary parameters
real(domlong,molwt,scale)
real(uwind,vwind) ! horizontal wind components
real(xlen,xtot)
real(xp,yp,zp,xs,ys,zs,al,be,ga)
real(xpw,ypw,zpw,xsw,ysw,zsw) ! wall parameters for use in BOUND
real(rad)
real(valu)
 ! primary parameters, integer
integer(nxgrid,nygrid,nzgrid)
 ! secondary parameters
integer(nrx,ixwal1,ixwal2)
integer(intger)
integer(secno)
integer(nrz)
integer(io) ! index of in-form objects
integer(iii)

 ! primary parameters, character
char(gas) ! what gas is released
char(tmodel,profl) ! turbulence model; wind profile
 ! secondary parameters
char(uprofl,vprofl,gasden,gasvel,gasflo)
char(item,ch)

 ! primary parameters, boolean
boolean(pipe,wal,releas,diagnos,uniform,restart)
 ! secondary parameters
boolean(bool,subwal)

 !--- settings
 ! reals
 ! geometrical settings
wallhigh=2.5 ! used as a general length-scale parameter
scale=wallhigh ! by means of this setting of scale
wallthck=0.2*scale ! which therefore influence all the rest

domhigh=3.5*scale
domwide= 12*scale

pipezpos=0.4*scale
indist= 2.5*scale
walldist=7.5*scale
outdist =14*scale

reldiam=2.0*0.0254 ! release diameter specified in inches
relhigh= 0.4*scale
relangl= 90 *3.14159/180 ! release angle; 0 = +ve x direction
floorco=0.005
pipediam=0.16*scale

windvel = 2
windangl=45 ! wind from north-west

 ! integers, defining the grid

nxgrid=50
nygrid=30

nzgrid=35

 ! characters
gas=h2s ! hydrogen sulphide
gas=propane ! other possibilities are methane, ethane and propane
gaspr = 1.e5 ! i.e. one atmosphere

profl=(zg/:zwlast:)^(1./7.) ! one-seventh power law
profl=1.0 ! uniform velocity
tmodel=lvel
tmodel=ke
 ! booleans
 ! theselogicals enable features of the simulation to be
 ! switched on or off, which permits their individual
 ! influences to be studied
releas=tA
wal=t

pipe=t
diagnos=f

uniform=f
restart=f

The rules for P-D-compatible PQ1s require that all parameters should be divided into
groups; and each declaration should be individually made, and should be accompanied first by
some words of explanation, and then its default setting. The template imported at the start of
section 2.1 obeys those rules. The above extract from 162.htm, by contrast, declares many
parameters together. These are acceptable to Satellite, but inconvenient for PHOENICS-
Direct.

 PQ1ed further requires, if it is to be told to create a SimScene, that Group names
should appear thus:

 XML-Group Geometry

Declaration and setting of parameters should appear one-by-one, each line containing a brief
description as a comment, i.e. after an exclamation mark. The first of case 162 items thus
should become:

 XML-Group Geometry
real(wallhigh) ! height of wall, m, used as a general length-scale parameter
wallhigh = 2.5

wherein the second line was extracted from
real(wallhigh,wallthck,walldist,indist,outdisnt)

and the third from
wallhigh=2.5 ! used as a general length-scale parameter.

The words ‘height of wall,’ above, were inserted by the human editor of the file; this
implies that, even after Pq1ed has been taught to edit pre-existing PQ1s automatically, some
additional human editing may prove desirable.

The same laborious but conceptually trivial one-parameter-at-a-time re-writing must now
be undertaken for all the parameters of the original PQ1. When performed automatically, the
xml-grouping will accord with the ‘settings’ section rather than with the real-integer-character-
boolean ordering of the ‘declarations’ section. A later-coming human editor may prefer a
different grouping; which he can arrange via simple cut-and-paste operations.

The final line of this part of the edited PQ1 will be:
 XML-End

with two spaces preceding the X.

(b) The menu

File 162.htm also contains its own interactive section, which PD does not need. Instead,
as part 2 of the interactive section (Question and answer), only one line should be added,
namely:

incl(frommenu.htm)

This brings in whatever settings the user will have made by way of the PHOENICS-Direct-
provided menu. This, while assisting users easily to see and modify the relevant parameters

also connects with:

 a descr_en.htm file, in the SimScene’s DOCS folder, which describes the scenario to
be simulated and provides other advice which is helpful to the user (Note that ‘_en’
indicates ‘English’(i.e. the language in which the scenario is written), as would ’_ru’
‘Russian’, ‘_ja' Japanese, etc., the language-specific character sets of which
PHOENICS-Direct can handle, when so instructed);

 the PQ1 file itself, as q1.htm, in the SimScene’s INPUT folder; and

 a scene.XML file, also in the INPUT folder, which re-formats part of the content of the
PQ1 and allows its parameter settings to be changed by way of a menu.

The PQ1 is always an ASCII file, because it must be interpreted by the English-only
PHOENICS Satellite module; but the other two should have utf-8 format, if Russian, Japanese,
Chinese or other character sets are being employed.

(d) Creating the SimScene
 Of course, the whole system of folders and files constituting a SimScene can be created
manually; and, if they exist, they can be simply updated. Alternatively, if they do not, or if it is
preferred to create a new one, one of Pq1ed’s most valuable functions can be activated. This
is its ability to create a complete SimScene, instructed by a single click of the user’s mouse
after he has pressed the F2 key on the keyboard so as to save the file. This causes a menu to
be presented, of which he should choose: ‘Create SimScene’.

The following new window ‘Fill empty parameters of template’ then appears. In this
the user has to print only the name of the scenario; for the other fields will be filled
automatically. The window will then look as follows.

Pressing the OK button will then create:

 directories of a new scenario,

 a template of the description file c:\phoenics\d_sapps\162\docs\descr_en.htm;

 the scenario file c:\phoenics\d_sapps\162\input\ scene.xml;

 the file c:\phoenics\d_sapps\162\input\q1.htm, which is a copy of the just-edited PQ1;
and

 the batch file c:\phoenics\d_sapps\162\start.bat, which launches the SimScene.

All these actions have in fact been taken, with the differences that the name GasRelease has
been chosen for the SimScene in place of the less informative 162, and that the template for
descr_en.htm has been replaced by an informative GasRelease-specific document. Its top
page is shown below.

 This needs not be the end of Pq1ed’s interest, it should be remarked, for SimScenes are
always open to improvements, which must be introduced by editing the PQ1 which now is
embodied in: \input\q1.htm). At the end of editing, pressing F2 will enable File >Update
‘SimScene’ to be selected, which automatically updates scene.xml, so as to correspond to the
new q1.htm.

 The logically-entailed changes to descr_en.htm, on the other hand, must of course be
introduced by a human editor.

2.3 From pre-existing single-instance Q1s

 There are two main reasons for wishing to convert single-instance Q1s into
parameterized form. First, there exist hundreds of moderately interesting cases in the
PHOENICS Input-File libraries which would become very interesting if only their users were
enabled easily to vary the physical or numerical input data either by simple hand-editing or,
better still, by way of a SimScene-type menu.
 Secondly, single-instance Q1s created by the VR-Editor for large-scale CFD simulations
of practical importance are very often of the ‘worst-of-both-worlds’ character, namely having
grids which, for the solid objects in the scenario, are too fine for economy and too coarse for
accuracy. PHOENICS does possess means of alleviating these disadvantages; but these can
be introduced into non-parameterized Q1s only with such difficulty that they are almost never
employed.
 Thought was first given to whether Pq1ed should be empowered to perform the task of
creating a PQ1 on its own, starting only from the given Q1 and its Q1EAR, EARDAT and
FACETDAT derivatives. This however was judged to be unnecessarily difficult because the
PHOENICS Satellite module can be taught to express its knowledge of its user’s settings
directly in parameterized format.
 The recent introduction into the PHOENCS Input language of the new OBJINFO
command has now made this possible. Its exploitation by the not-yet-existent PQ1Maker
module remains a task for the future.

3. Further capabilities
3.1. Automatic creation of scenario

Pq1ed has been provided with another way of editing parameterized Q1 files into the
format fitted for automatic creation of scene.xml.

The user should select one or several lines where variables are declared, e.g. as the
next lines show:

It is important, when selecting the lines, to place the cursor at the beginning of next line,
in the given example – at the beginning of the fourth line. If the cursor is placed at the end of
the third line, only two first lines will be converted.

Then, upon choosing Edit>‘Conversion to XML’, the selected lines will be changed in to
the following:

Earlier selected lines do remain, to show to the user that this conversion has been made
correctly; but all declared variables have been written in the PQ1Editor format for further editing
of scene.xml. The user should verify the formatting accuracy, introduce the name of the group
and all variables, then add parameter values and the include-filename, if such a file is required.
Only after that should the extra lines be removed.

Upon editing, the indicated fragment looks as follows:

It should be noted that:

 parameters of the given group will be saved in the file geom.htm, not in
frommenu.htm.

 Description of parameter groups can be located in any place of Q1 file, the only thing

required is to type the line XML-End at the end of the text referring to the xml-groups.

 Declaration of group parameters can be made not only in PQ1 but in any file which is
connected to Q1 by the operator incl().

Upon creation of directories and scenario files, several first parameters of this group will be
written in the file scene.xml as is shown below:

3.2. The Multi-scenario SimScene possibility

A new opportunity that has been recently introduced into Pq1ed is a possibility of creating
SimScenes wherein several separate scenarios are combined. If, for instance, there are 3
PQ1s that we want to combine into one SimScene, then the algorithm to do this is as follows.
1. Open the first Q1 in its folder in the Pq1ed and create on its basis a new scenario in the
usual way. You will then be able to create a scenario via command Create SimScene which
can be inactive.But it will become active when you do the following:
Click the command Create SimScene, whereafter the message “Variable declarations are
checked successfully” will appear. Click “OK” and the fill-in scenario box will appear.

2. Introduce the new multi-scenario SimScene name, e.g. Variants. Then click OK.
3. There will be the message “Scenario file is created successfully”, click OK.
4. You can at this stage check d_sapps directory and find there the folder Variants
containing a usual collection of folders for any SimScene. But this SimScene does contain only
one scenario created on the basis of the 1st Q1 file. Let’s add another one to it.
5. Open the second Q1 in its folder via PQ1 Editor paying attention that it is understood by
the editor as a Q1 file, otherwise it might be necessary to resave it as a Q1 file.

6. Go to File – Add Scenario to SimScene. It will then be necessary to choose the earlier-

created scene.xml file from d_sapps\variants\input folder.

7. Message “Variable declarations are checked successfully” will be displayed. Click OK.
8. The window “Add second scenario to SimScene” that follows will appear.

In these window boxes the user should type the information which will later appear in the
SimScene Variants opening window.
Let us now type in the Line 1 box instead of “Workshop cases” a more meaningful title, e.g.
“Flow Simulation” and in the second line box “Common cases” instead of “Equipment”.
The first scenario title will be, e.g., “Ramp”, and the second one –

 “Labyrinth”. The user can choose any titles and explaining information that he would like to
display in the opening window and click OK.
Note that the name of the second scenario by default will be Q1_2.htm (see the box “Name
of Q1 without path and extension”) to distinguish it from the first scenario copied to the Input
folder under its original name, q1.htm. However, the user can save the second scenario
under any name.
9. There will be the message that “Scenario file is added successfully”. Click OK.
10. Let us now see what we obtained in the end. Open the Variants folder and run this

scenario via start.bat. The opening window should look as follows.

You may now choose any case, Ramp or Labyrinth, to work with later and press the Start
button. Each selected scenario will be opened with its own menu and the user can work with
any of them.
11. Now, if another scenario should be added to this Variants SimScene, the items 5-7 of

this algorithm should be repeated and its new title should be given. The third Q1 will be
copied to the Variants\input folder as Q1_3.htm and so on.

12. After adding the third Tubeflow scenario, the opening window will look as follows.

13. It is also possible to delete or rename any scenario in the multi-scenario SimScene via

commands File – Delete Scenario from SimScene or File – Rename Scenario

3.3 Treatment of INCLuded files

The INCLude command of PIL is a long-standing feature providing the advantage that
files of general usefulness, such as those in \d_object\pilobj can be imported into many
different PQ1s at the moment when Satellite reads them.

When the Pq1editor encounters INCL statements, it too acts as though the contents of the
INCuded files were actually present in the PQ1; and it does so in whichever of its two modes of
operation it is being used, these being:

(a) editorial, i.e. enabling textual changes to be made; and

(b) creative, i.e. writing corresponding-to-pq1 scene.xmls and other SimScene-related
files.

In respect of the editorial mode (a), let us take the incl(frommenu.htm) statement as an
example, and specifically that of the Ramp SimScene. On reading its INCL statement, PQ1ed
will present the following on the screen:

!------- original line (incl(frommenu.htm)) PLEASE, DO NOT EDIT OR REMOVE THIS LINE !!!
!------- start of included file (C:\phoenics\d_sapps\ramp1\input\frommenu.htm) PLEASE, DO
NOT EDIT OR REMOVE THIS LINE !!!
followed by:
 <html><head><title>frommenu.htm</title>
 <link rel="stylesheet" type="text/css"
 href="/phoenics/d_polis/polstyle.css">
 </head><body><pre>
 ! Group grid
nxx = 20 ! number of cells in x-direction
nyy = 20 ! number of cells in y-direction
nzz = 20 ! number of cells in z-direction
sweepn = 100 ! number of iterations

 ! Group geometry
flolen = 60. ! length of floor, m
flowid = 15. ! width of floor, m
ceilhigh = 3. ! height of ceiling, m
flooth = 0.5 ! thickness of floor, m
applen = 20. ! apperture length, m
appwid = 5. ! apperture width, m

 ! Group turbulence and flow
turb = t ! turbulence
flowdir = positivez ! select flow direction (positive or negative)
 </pre></body></html>
and then:
!------- end of included file (C:\phoenics\d_sapps\ramp1\input\frommenu.htm) PLEASE, DO
NOT EDIT OR REMOVE THIS LINE !!!

The lines printed here in blue font represent the actual content of the frommenu.htm. The
lines printed in green font are messages sent both to itself and to the user. To itself they say:
“Here are the beginnings and ends of the included file”. They are needed as markers; hence
the “PLEASE DO NOT EDIT” is addressed to the user; to which might have been helpfully
added: “but you MAY edit or remove anything within the included material, just a though you
had loaded the file into the editor yourself”.

The display of the contents of the included file is a consequence of the default setting in
Settings – Options – Treatment of included files, i.e.

Clearing the box in question will result in the following: only the INCL statement
incl(frommenu.htm) will be left and the contents of the included file will be hidden. Only if this
box is ticked, it is possible to edit the contents of the included file.

No such ticking is needed to cause PQ1ed to perform its second function (b). When the
user wishes to create the scene.xml which corresponds to the Q1 contents, he does so via
commands File – Create Simscene or File – Update Simscene, whether the Q1 does or does
not contains INCL statements.

4. Concluding Remarks

The PQ1 editor is a utility which is being continually developed, to keep pace with the
developments in PHOENICS and in the manner in which it is used. For example, current
attention is being devoted to the various manifestations of the ‘Connected Multi-Run’ concept;
which may require extension of the scene.xml format. When these developments have attained
a more settled state, further versions of PQ1ed are to be expected.

