Encyclopaedia Index

Contents list

VR Environment

This section describes the menus and dialog boxes available from the top bar of the main VR-Editor/Viewer graphics window. In some cases, the same functions can be accessed via the icons on the tool bar.

File Menu, Settings Menu, View Menu, Run Menu, Options Menu, Compile Menu, Build Menu, Help, The Tool Bar, The Status Bar


File Menu

The File menu consists of the following items:

Start new case, Open existing case, Load from libraries, Reload Working files, Open file for editing, View monitor plot, Save working files, Save as a case, Save Q1 File As, Save Window As, Print, Exit, Quit

  1. File - Start New case

    This will bring up a list of available Special-Purpose products.

    Image: List of SPP's.

    Core is the general-purpose menu, which is normally supplied to users; the others are special-purpose programs that are supplied only as a result of a specific order.

    Selecting one of them wipes out all the settings for the current case, and resets all variables to their default values. All the default input and output files (see File - Save as a case) are deleted. If intermediate solution files are present, a dialog opens asking whether they should be deleted as well.

    A new Q1 is created, which contains the following lines:

    TALK=T;RUN(1,1)
    CPVNAM=VDI; SPPNAM = sppnam
    STOP
     

    where sppnam is the name of the selected special-purpose program.

    This function is also accessed from the on the toolbar.

  2. File - Open existing case

    This allows a previously saved case to be read in (see File - Save as a case). This function is also accessed from the icon on the toolbar.

    A dialog box is opened requesting the user to confirm that an existing case is to be opened.

    If 'Open Q1 in current directory' is selected, the current working directory is left unchanged, and files will be copied into it.

    If 'Open Q1 in case directory' is selected, the working directory will be changed to the folder where the case files are stored. This will allow any geometry files specific to the case to be picked up.

    The current working directory is the one in which the program started, unless it has been changed since. The working directory can be changed from ' Options - Change working directory'.

    If the VR-Environment was started from the command line, it is initially whatever directory the command was issued from.

    If it was started from the Start menu, or by clicking on the PHOENICS icon, it is the last working directory used the previous time PHOENICS was run. By default, it is set under 'Properties / Start in' for the Start menu item or icon to \phoenics\d_priv1.

    If 'Preserve current view location' is ticked prior to clicking 'OK', the view information held in the new case will be ignored, and the current view will be preserved. This can be useful when comparing details of different cases.

    When 'OK' is clicked, a further dialog opens, which allows browsing for files with a .Q1 extension.

    The files for the selected case are then copied to the selected working directory under their default names - see File - Save as a case for a list of default names.

    Once the standard files have been restored, a check is made to see if intermediate step or sweep files are present (see Main Menu - Output, Field Dumping for information on how to save intermediate files). If they are present, a second dialog opens, asking whether these should be restored as well.

    A saved case may also be opened by dropping it into the VR-Editor window. To do this, highlight a Q1 file in an opened Windows Explorer window, and then, with the left mouse button held down, drag it into the VR-Editor window and release the mouse.

  3. File - Load from libraries

    The dialog box below allows a case to be loaded from one of the PHOENICS libraries.

    If the case number is known, it can be entered directly into the case-number entry box. To browse through the libraries to find a suitable case, click on Browse. This brings up a library-browsing dialog:

    The various trees can be expanded by clicking on the + next to the library name.

  4. File - Reload Working files

    This causes VR-Editor to read the data in the Q1 file on disk in the current working directory. This has the effect of removing all changes made since the last time the working files were saved, or the case was saved.

    Any changes made to the Q1 file by hand editing will be acted upon.

  5. File - Open file for editing

    This opens one of the following files for editing with the default Windows text editor (often Notepad):

  6. File - View Monitor Plot

    This opens a window which displays the latest convergence monitor plot generated by the Earth solver. This plot may be either

    according to the settings made in the Q1. These setting can me made using Monitor options dialog from the Options menu.

    If the "Save all 3 monitor views at the end of run" option is ticked then the menu options for each of the plot types is enabled.

  7. File - Save working files

    This causes VR-Editor to write out a Q1 file to the current working directory, based on the current settings. The existing Q1 will be overwritten. EARDAT and FACETDAT files for Earth are also written.

  8. File - Save as a case

    This will save the Q1 input file and all relevant output files. Firstly a dialog asks if changes to the Q1 are to be saved.

    If 'Save changes' is ticked, the Q1 on disk will be overwritten with the current setup. If it is not, the Q1 on disk will be used. After clicking 'OK', a file-browsing window will open, as shown below,

    Select a folder, or make a new one with the new folder icon. Enter a name into the File name box and click Save. The default folder is the current working directory. Save to a different folder by browsing to it or making it in the file selector.

    The following files are saved:

    File name Function Saved as:
    q1 Input file case.q1
    result Results file case.res
    phi1 ASCII solution-field file case.phi
    phida1 direct-access solution-field file case.pda
    parphi ASCII solution-field file for PARABOLIC or 2D-XY transient case.par
    parada direct-access solution-field file  for PARABOLIC or 2D-XY transient case.pdr
    pbcl.dat2 PARSOL cut-cell data file case.pbc
    xyz3 ASCII BFC grid file case.xyz
    xyzda3 direct-access BFC grid file case.xda
    patgeo PHOTON geometry file case.pat
    gxmoni.gif EARTH monitoring image from last solution sweep case.gif
    ghis4 file containing GENTRA particle track histories case.his
    gphi4 GENTRA restart file case.gphi
    genuse4 macro file for drawing GENTRA particle tracks case.gen
    u PHOTON 'USE' (macro) file case.u
    inforout output file from In-Form PRINT case.inf
    cham.ini configuration file case.init
    phoenics.mcr Tecplot macro file case.tec1
    tecgeom.dat Tecplot geometry file case.tec2
    tecdata.dat Tecplot solution file case.tec3
    fvgeom.fvuns Fieldview geometry file case.fv1
    fvformula.frm Fieldview macro file case.fv2
    fvdata.nam Fieldview name file case.fv3
    fvdata.g Fieldview grid file case.fv4
    fvdata.f Fieldview solution file case.fv5
    vtkcentre.vtk VTK cell-centre data file case.vtk1
    vtkvertex.vtk VTK cell-corner data file case.vtk2

    Notes:

    1. The choice between phi and phida is controlled by the Options - File Format dialog box.
    2. The PARSOL cut-cell data file is only present if PARSOL has been turned on.
    3. The choice between xyz and xyzda is controlled by the Options - File Format dialog box. The BFC grid file is only present if Body-Fitted Co-ordinates are in use.
    4. The GENTRA files will only be present if GENTRA is active.
    5. The Tecplot, Fieldview and VTK files will only be present if the appropriate 'Additional interface' switch has bee activated.
    6. The list of files to be saved, and their corresponding extensions, is read from \phoenics\d_allpro\phoesav.cfg. This file can be modified to add any other files the user may wish to save as part of a case.

    The files will be copied to the selected folder. Warnings are issued if files with the same name already exist, or if the Q1 is newer than RESULT. This function is also accessed from the icon on the tool bar.

    Once the above files have been saved, a check is made to see if intermediate step or sweep files are present (see Main Menu - Output, Field Dumping for information on how to save intermediate files).

    If they are present, a second dialog opens, asking whether these should be saved as well. As these files can be very numerous and very big, it may be better to save them manually by compressing them into an archive. If it is chosen to save them, they will be saved to the selected folder with the names <case_name>.<filename> e.g. for case run_1 saved to folder case_1 the names would be case_1\run_1.a1, case_1\run_1.a2 etc.

    If PARSOL is active, the intermediate cut-cell data files will be saved as <case_name>.pbc<letter><number> e.g. case_1\run_1.pbca1, case_1\run_1.pbca2 etc.

    If GENTRA is active, intermediate GENTRA restart files will be saved as <case_name>. gphi<letter><number>.

  9. File - Save Q1 File As

    This will save the Q1 as a new file with a different name. Firstly a dialog asks if changes to the Q1 are to be saved.

    If 'Save changes' is ticked, the Q1 on disk will be overwritten with the current setup. If it is not, the Q1 on disk will be used. After clicking 'OK', a file-browsing window will open. Select or make a folder, enter a name and click 'Save'. The Q1 on disk will be copied to the new name.

  10. File - Save Window As

    This allows the contents of the main graphics window to be saved as a GIF, PCX, BMP or JPG format file.

    The dialog box allows the pixel size and aspect ratio for the saved image to be selected. The default resolution and aspect ratio are the same as those of the original screen image. The Reset button sets the height and width to the current height and width of the graphics window.

    The default file type is set in the [Graphics] section of the CHAM.INI file.

    This function is also accessed from the icon on the tool bar.

    Note that if 'Use virtual screen' is ticked, the area of the main graphics window is captured without any overlying windows and without the surrounding window frame and toolbars. If the hand-set is moved to lie over the main graphics window, it will not be included in the saved image. 

    If 'Use virtual screen' is unticked, the entire window together with frame, toolbars and any overlapping windows will be captured.

    The image will be saved with whatever background colour has been set from ' Options - Background colour'.

    The default folder is the current working directory.

  11. File - Print

    This allows the contents of the main graphics window to be sent directly to any available printer device.

    The dialog box allows the printer, number of copies and other print options to be selected. This function is also accessed from the icon on the tool bar.

    The image will be saved with whatever background colour has been set from ' Options - Background colour'.

  12. File - Exit

    This exits from PHOENICS. Before the program closes down, a prompt to save the current work will be given . PHOENICS-VR can also be exited by clicking on the Close window icon, in the top-right corner of the main graphics screen.

  13. File - Quit

    This exits from PHOENICS without saving any files.


Settings Menu

The Settings menu consists of the following items:

Domain Attributes, Probe Location, Add Text, New, Object Attributes, Find Object, Merge Objects Editor Parameters View Direction Near Plane Rotation speed Zoom speed Depth effect Adjust lighting

  1. Settings - Domain Attributes

    This brings up the Main Menu. It is equivalent to the 'Main Menu' button on the hand-set.

  2. Settings - Probe Location

    In the Editor, the probe location defines the location in the model domain which will be used to monitor the progress of the solver solution. It is represented visually in the domain as . The probe location dialog allows the user to locate the probe either using physical units within the domain or via cell location.

    Set view centre will set the view centre of the image to the current probe location, thus centering the image on the probe.

    The 'Parameters' tab is described under 'Settings - Editor Parameters'.

  3. Settings - Add Text

    This option can be used to place up to twenty lines of text on to the main graphics window. To create a new text object, select 'Add' from the Text menu. This will open the Text Properties dialog (shown below); each line of text may be up to 80 characters in length. The text may be placed in the window either by specifying a pixel location or by clicking the left mouse button over the desired location.

    The 'Attributes' menu may be used to change some of the attributes of the text, eg colour. The font used for the text will be that specified by the 'Choose Font' item on the Options menu.

    Note: The text is not saved to Q1, so is lost on exiting the VR Environment. In the Viewer, text items are saved to a macro.

  4. Settings - New

     .

    There are five options -

    New Object creates a new object and displays the object dialog for the newly-created object. It is equivalent to clicking on Object - New - New Object in the Object management Dialog reached from 'Object' button on the hand-set or the O icon on the toolbar.

    Import CAD Object

    Creates a new object and opens the CAD Import dialog for it.

    Import CAD Group

    Opens the Group CAD import dialog, which allows a number of CAD files to be imported in one action. Each CAD file specified will create a new object.

    Import Object displays a file-browser, with which a pre-existing assembly (POB) file can be selected for import. New objects are generated for each object in the assembly, and the object dialog for the first object in the assembly is displayed.

    Clipping plane creates a new Clipping_plane object.

    Plotting Surface creates a new Plot_surf object.

  5. Settings - Object Attributes

    This brings up the object dialog box for the currently-selected object. It is equivalent to double-clicking on an object. If no object is already selected, the Object Management Dialog, showing a list of all objects, will be displayed.

  6. Settings - Find Object

    This brings up the Object Management Dialog. The selected object (if any) becomes the current object, and is high-lighted in the list of objects.

  7. Settings - Merge Objects

    This brings up the Merge Objects dialog. If no object is selected, then the domain "CHAM" will be displayed in the the first line and the listbox will be empty. The first object may be selected either by clicking on an object in the domain or by selecting one from the pulldown list. Once a first object has been selected then a list of compatible objects will appear in the listbox. - For an object to be considered compatible it must be of the same Object Type (eg BLOCKAGE) and have the same Material Property.

    The Merge Objects option is provided so that objects which overlap can be joined together making the the detection of the objects simpler for the solver. It is possible to merge separate objects, but this does not provide any useful advantage.

    Selection of the objects to merge may be done either by selecting the object in the listbox or by clicking on the object in the domain. If multiple objects are to be merged, then the user should keep the Ctrl key pressed while making selections.

    The user should provide a filename for the Merged object geometry, the initial default is 'mergedgeom.dat', but if this already exists then the name will increment to 'mergedgeom_1.dat' etc.

    One would normally want to carry out the merging of the objects on the current state of the model, the default then is to save any changes to the q1 before carrying out the merge. This Q1 is then copied to another saved copy, the initial default name is 'saved.q1'. This enables the user to revert to the un-merged Q1 if necessary.

    After the merge a new object will created with the size and position set to encompass all the merged objects and will used the merged object geometry. The original objects will retain their original positions, but will now be NULL objects. The reason for this is to preserve the original regions and grid definition.

  8. Settings - Editor Parameters

    The VR Editor Parameters menu sets the Increment size and Scale factors.

    • Increment controls the increment in size or position each time the Size up/down or Position up/down buttons on the hand-set are pressed. It also controls the incremental movement of the probe. There is a separate increment size in each coordinate direction, defaulted to give approximately 100 steps to cross the domain. This can be useful if the domain dimensions are very different in each direction.
    • Snap to grid, when ticked, forces the size and position of objects and the probe position to be exact multiples of the increment size when the up/down arrows are clicked. When not ticked (the default), the size and position will change by the increment from the current size/position. Note that this function applies to the Size and Place tabs of the Object dialog, not the hand-set. Exact values can always be typed in.
    • The scale factors control the relative scaling of the entire geometry. If the aspect ratio of the domain is extreme, say the domain is 100m * 1m *100m, it is very difficult to visualise the domain properly. It can also be difficult to select objects, as one of their dimensions will be very small. In such a situation, setting the scale factors to 1, 20, 1 would make the domain appear to be 100 * 20 * 100

    The Probe tab is described under 'Settings - Probe location'.

  9. Settings - View Direction

    This option leads to the Reset View Parameters dialog which is described in the section Reset View Parameters.

  10. Settings - Near plane

    Parts of the image closer than the near plane are not visible. The default setting ensures that the entire image is visible. The near plane can be moved interactively by sliding the slider on the dialog box. The dialog can remain open without interrupting other activities. Reset restores the default value.


    Image: NORMAL VIEW
    Image:INCREASED NEAR PLANE

    Rotating and zooming the image will expose or hide different parts of the geometry.

    Note that the backs of the exposed facets are transparent. To make them solid, click on View, Show back of objects.

    Image:INCREASED NEAR PLANE (with visible backs)

  11. Settings - Rotation speed

    Rotation speed controls the speed at which the image rotates in response to the 'rotate' and 'move' buttons on the hand-set or mouse movements.

    The rotation speed can be changed interactively by sliding the slider on the dialog. The dialog can remain open without interrupting other activities. Reset restores the default value.

  12. Settings - Zoom speed

    Zoom speed controls the rate at which the image gets bigger or smaller in response to the hand-set 'zoom' buttons or mouse movements.

    Image: Zoom speed
    Dialog

    The zoom speed can be changed interactively by sliding the slider on the dialog. The dialog can remain open without interrupting other activities. Reset restores the default value.

  13. Settings - Depth effect

    Depth effect controls the degree of perspective visible. Another way of controlling this is the Angle Up/Angle Down button-pair.

    Image: Depth effect Dialog

    Image: Large depth effect
    Image: Small depth effect

    The depth effect can be changed interactively by sliding the slider on the dialog. The dialog can remain open without interrupting other activities. Reset restores the default value.

  14. Settings - Adjust light

    Adjust light controls the illumination of the scene.

    Image: Lighting
    options Dialog

    Light ambient: Turns the ambient light on and off. The intensity controls the amount of lighting effect applied to all objects regardless of the light source position. An ambient light of zero means that areas unlit by the diffuse light source receive no lighting at all and are entirely black, while areas lit by the diffuse light source get only the effect of that light. Larger values produce more lighting effect in areas not lit by the diffuse light source, making these areas show some of the surface color. An ambient light of 100 means that all areas are lit by the maximum amount, and areas unlit by the diffuse light source use the full surface color.

    Light diffuse: Turns the directional light on and off. The intensity controls the amount of lighting effect produced by this light source. An intensity of 100 produces the maximum contrast between lit and unlit areas, and fully lit areas use the full surface color. Lesser values produce less contrast between lit and unlit areas, and fully lit areas use darker colors. An intensity of zero means the light source produces no contrast between lit and unlit areas, and all areas are black.

    Light specular: Turns specular highlights on and off for all light-source shaded objects in the plot. Specular Highlighting adds the semblance of reflected light to 3D shaded or flooded objects. The intensity (%) controls intensity of specular highlights (that is, the amount of reflected light, which controls the amount of whiteness at the peak of the highlight).

    Light source location: The light source is attached to the domain, so the lighting does not change as the domain is rotated. The upper slider moves the light through 360 in the X-Y plane, and the lower slider through 360 in the Y-Z plane. When both sliders are at zero (at the left end), the light shines straight down the Y axis.

    Secondary opposing light source: Turns on and off a second light source directly opposite to the main light source. This lights the back of the model, giving a fairly uniform illumination.


View Menu

The View menu contains the following items:

Image: VIEW MENU

Control Panel, Movement control, Toolbars, Status bar, Text box, Show back of objects, Window size

  1. View - Control Panel

    This controls whether the object and domain hand-set is visible or nor. The hand-set can be closed by clicking on the 'close window' icon in the top-right corner. This may be required, for example, in order to get an unobstructed full-screen image. Once closed, the hand-set can only be restored from this menu. When the hand-set is closed, additional buttons appear on the toolbar in order to maintain functionality.

  2. View - Movement control

    This controls whether the movement hand-set is visible or nor. The hand-set can be closed by clicking on the 'close window' icon in the top-right corner. This may be required, for example, in order to get an unobstructed full-screen image. Once closed, the hand-set can only be restored from this menu.

    When the movement hand-set is closed, the mouse control is automatically activated.

  3. View - Tool bar

    This controls which parts of the toolbar appear at the top of the graphics screen. The toolbar can be used to replace the functions of either hand-set.

    The 'general' toolbar contains the file-handling icons, and also displays the name and type of the currently selected object. If no object is selected, it will display the name of the domain, usually set to CHAM.

    Image: General
    TOOL BAR

    The 'domain' toolbar contains icons connected to the domain, including the probe and Main Menu.

    Image: Domain TOOL  BAR

    The 'Object' toolbar contains icons connected with object management.

    Image: Object TOOL
    BAR

    The 'Movement' toolbar contains the movement icons from the Movement handset.

    Image: Movement
    TOOL BAR

    'All' displays all the currently available portions of the toolbar.

    The tool bar is automatically turned off if the BFC mesh generation menu is entered.

    View - Status bar

    This controls whether the status bar along the bottom of the graphics image is visible or not. If it is turned off, it will not appear in the images saved by 'File - Save window as'.

  4. View - Text box

    This controls whether the Satellite command prompt

    Satellite Command prompt

    should be visible or not. If a Q1 being loaded into the VR-Editor requires a response from the user, or if errors are detected reading the Q1 file the Command prompt will be automatically made visible regardless of this setting.

  5. View - Show backs of objects

    By default, the facets defining the objects are only drawn single-sided. If holes appear, it is likely that some facets are pointing the wrong way, and the object is not valid. If the 'Near Plane' setting has been used to cut away part of the geometry, then again the transparent backs of some facets will be exposed. To make them appear solid, toggle the tick-mark next to Show backs of objects.

  6. View - Window size

    This causes the current window size to be displayed at the right-hand end of the Status bar at the bottom of the screen.


Run Menu

The Run menu consists of the following items:

Image: Run Menu

Pre processor, Parallel Solver, Solver, Post processor, Utilities

Pre processor

The Pre processor sub-menu contains the following items:

Image: Pre processor
Menu<

GUI - Pre processor (VR Editor),Text mode (Satellite), Fortran creator (Plant Menu), CHEMKIN Interpreter

  1. Run - GUI - Pre processor (VR Editor))

    This option is grayed out when the VR-Editor is active. In the VR-Viewer, it is the way to switch to the VR-Editor.

  2. Run - Text mode (Satellite)

    This will run the PHOENICS Satellite, using the Q1 file in the current working directory.

    IMAGE: Satellite Options

  3. Run - Fortran creator (Plant Menu)

    The PLANT menu is a graphical environment for the creation of FORTRAN code, which is linked into the Earth Solver. Expressions are provided, in algebraic form, for physical properties, source terms, specialised output. PLANT turns these expressions into error-free FORTRAN. Full on-line help is available within the PLANT menu.

    To create the new Earth executable and run it, Click Options, Run Version, select Earth, and then Private. Click Run - Solver. The PLANT-specified coding will be generated, and the compilation/linking process will happen automatically.

  4. Run - CHEMKIN Interpreter

    This forms part of the interface between PHOENICS and CHEMKIN2.

    Image: CHEMKIN
    Interpreter dialog

    It runs the CKINTERP program which transforms the mechanism file (*.ckm) into the CLINK and TPLINK files required by CHEMKIN.

  5. Parallel Solver

    The Parallel Solver option will only appear if the installation has the appropriate license file. When the item is chosen, a dialog will appear from which the number of processes to be started on the current machine can be chosen, or an MPI configuration file can be selected.

    Image: Parallel
Solver Dialog

    The dialog box provides the user with an option to select up to 64 processes, in steps of 2. If the number required is not in the pull-down list, it can be typed into the box.

    If the parallel run is to use processors which are located within a cluster of PCs, a list of available hosts must be provided.

    Use MPI configuration file allows to use a the specified configuration file to set the processors to be used.

    The splitting of the domain between the processors (domain decomposition) can be Automatic (the default), or Manual. When set to Manual, the numbers of subdivisions in the X, Y and Z directions are saved to Q1 as IG(1), IG(2) and IG(3) respectively, and LG(2) is set T to indicate manual decomposition. These settings are made in Group 19 of Q1.

  6. Solver

    This will run the PHOENICS Earth solver on the user's own computer, using the EARDAT file in the current directory. VR-Editor will write out a new Q1 and EARDAT before starting the Earth run.

    Normally the 'PUBLIC', or CHAM-supplied, Earth will be run. If GROUND coding has been created, either by using the PLANT menu, or by hand-editing GROUND.HTM or GENTRA.HTM, the local, or 'PRIVATE' executable will have to be run. From the Options menu, select Run Version, then Earth, then Private.

    Whenever GROUND.HTM or GENTRA.HTM are newer than the local Earth executable, EAREXE.EXE, there will be a prompt to re-compile and re-link before running. PLANT will re-generate GROUND.HTM every time, so if no changes have been made, time can be saved by choosing not to recompile and re-link.

  7. Post processor

    The Post processor sub-menu contains the following items:

    Image: Post
processor Menu

    GUI Post processor (VR-Viewer), Text mode (Photon), X-Y Graph plotter (Autoplot)

    1. Run - GUI Post processor (VR-Viewer)

      This will run the VR-Viewer. If The VR-Viewer is already running, this item will be grayed out. In the Viewer, press F6 to plot new files but keep all the view settings.

    2. Run - Text mode (Photon)

      This will start the PHOTON visualisation program. PHOTON can be switched between a Windows version and the original from Options - Run Version.

    3. Run - X-Y Graph plotter (Autoplot)

      This will start the AUTOPLOT X-Y graph-plotting program. AUTOPLOT can be switched between a Windows version and the original from the PHOTON entry in Options - Run Version.

  8. Utilities

    The contents of the Utilities sub-menu are read from a configuration file ( /phoenics/d_allpro/phoesav.cfg), and may be customised, either by CHAM prior to delivery, or by the user after installation. The menu may contain some or all of the following items:

    Image: Utilities
Menu

    AC3D, Shapemaker, FacetFix, GENTRA track unpacker, TECPLOT translator, IGES reader, Run - PINTO, ParaView

    1. Run - AC3D

      This will run the AC3D program, a program for creating shapes for use in the VR-Editor. It can also be used to import and repair STL and (some) DXF files from CAD.

    2. Run - Shapemaker

      This will start a stand-alone interactive program which generates shapes for use in the VR-Editor. The same functionality is accessible from the 'Shape' tab of the Object Specification dialog.

    3. Run - FacetFix

      This starts an interactive program which reads STL (and PHOENICS geometry DAT) files and repairs them.

      Image: FacetFix dialog

      It will heal holes in surfaces, and ensure that all the facets point in the correct direction. The output is a PHOENICS geometry file (.DAT file).

      The top line defines the input file - either type the name into the box or use the Browse for Input button to find the input file (stl or dat format) using standard file dialogs. Note that Facetfix will read ASCII STL files, but not binary ones.

      If the output file name is not specified, it is made up from (up to) the first six characters of the original name, ending in _0. If the original file was mygeom.stl (or mygeom.dat), the corrected file would be mygeom_0.dat. mygeom_0.err will contain information about what changes have been made.

      The second line chooses a filter file - the Browse for Filter file option allows the user to search for a filter file using a file dialog.

      The next 4 lines define a simple filter - give the minimum x, y & z coordinate and the maximum x, y, z, choose whether to apply the 'exclude' option described in the filter section and give a suitable output file name (if left blank Facetfix will choose a file name automatically, using the first 6 characters of the input file and adding '_0.dat' - ie build_0.dat).  If 'Multiple files' is ticked, each closed body within the original geometry will be written out to a separate DAT and STL file.

      Once the files have been selected, the 'Run FacetFix' button launches facetfix.exe with arguments derived from the contents of the dialog window. Further details can be found in 'The PHOENICS FacetFix Utility'.

    4. Run - GENTRA track unpacker

      This will run the GENTRA unpack program, which extracts individual particle track histories from the track file GHIS. (This is no longer needed, as in general the Viewer can plot all the tracks directly from GHIS.)

    5. TECPLOT translator (standalone)

      This will start the stand-alone interface between PHOENICS and the TECPLOT visualisation program from Tecplot Inc.

      The interface will read a named PHOENICS PHI (and XYZ for BFC) file and produce a TECPLOT TECDATA.DAT file. It does not produce a geometry file, and does not take account of PARSOL cut cells.

      TECPLOT output files (including model geometry) are also created by the Editor and Solver when TECPLOT is selected under 'Options - Additional interfaces'. This is the preferred way of generating TECPLOT output.

    6. IGES reader

      This starts a program which reads an IGES file, and translates points, lines, arcs and splines into PHOENICS BFC mesh generation commands.

    7. PINTO - PHI Interpolator

      This starts the PINTO interpolation program. It reads in a PHI file and interpolates it onto a different grid. Further information on how to operate PINTO can be found in the Encyclopaedia.

    8. ParaView

      This starts the ParaView post-processor available for free download on the web. Note that this will only work without modification of phoesav.cfg if ParaView is installed in the default location.


Options Menu

The Options menu contains the following items:

Solver monitor options, Run version, Select Private Solver, Change working directory, PHOENICS Environment Setting, File format, Hardware Acceleration, Change font, Background Colour, Clear Textbox content, Additional Interfaces

  1. Options - Monitor options

    The Solver Monitor options menu brings up a dialog box which controls the Earth graphical convergence monitor.

    Image: SOLVER
    MONITOR OPTIONS

    • ISG50 can be unset (=0), enforce endpause (=1) or turn off endpause (=2).
    • ISG51 can be unset (=0), enforce figures (=1) or turn of figures (=2)
    • ISG52 can be unset (=0), maximum and minimum values (=1), max. abs.corrections (=2) or spot value (=3)

    Note that the above three settings are also on the Main Menu - Output panel, and that when first two are 'Unset' the function can be controlled by Pause and Figures below.

    • Rolling monitor width. When set greater than zero, the monitor screen will continuously show the last n sweeps.
    • Save all 3 monitor views. When ticked, images of all three convergence plots (spot value and residual, maximum correction and nett source, and maximum and minimum value in the field) will be saved at the end of the run.
    • Pause determines whether Earth will wait at the end of a run, with the convergence monitoring information on screen, for END, DUMP or ABORT to be pressed before writing out the RESULT and PHI files, or whether it will automatically write all output files and close down with no user-intervention. It can be useful to turn pause on for long over-night runs.
    • Figures determines whether the numerical values of the convergence plots are displayed, or just the graphs. For very coarse grids, the time taken to update the numbers may be a considerable fraction of the elapsed run-time.
    • Sweep determines whether the current sweep (iteration) number is displayed.
    • Spinner determines whether an activity indicator is displayed between screen updates during big runs. This will give some impression of whether anything is happening, or whether Earth has crashed. However, the CPU overhead can be significant.
    • Timer determines whether the elapsed time and estimated total run time are displayed.
    • Z planes is used in 3D cases to determine whether to display the current IZ plane number.
    • Line thickness sets the width in pixels of the line used to draw the convergence monitor curves.

    All the monitor options settings are held in the CHAM.INI file, which can be edited from File - Open file for editing.

  2. Options - Run version

    The Run version menu leads to the dialog boxes below:

    Image: RUN VERSION

    These allow the choice between Public, Private and Prompt for Satellite and Earth.

    See also the Compile and Build menus for information on creating private executables.

    Note that if the private executable is chosen, and GROUND.HTM or MAIN.HTM or GENTRA.HTM are newer than EAREXE.EXE, the choice will be offered of re-compiling and re-linking.

    Image: Re-Build
    Earth

    If the answer is No, the existing EAREXE.EXE will be run. PLANT will re-create GROUND.HTM each time EARTH is run. If no changes have been made to the PLANT settings, considerable time can be saved by not re-building.

    For Photon, the choice is between Photon and WinPho. Photon is the original version of the text-mode post-processor. WinPho is a new Windows version.

  3. Options - Select Private Solver

    This option allows the user to select any named executable to be used as the PHOENICS solver, thus avoiding the necessity of having to have the private solver in the local directory. The name of the private solver is then saved to the file Phoenics.cfg at the end of the session

  4. Options - Change working directory

    This allows the working directory be changed. The current working directory is displayed in the status bar at the bottom of the main graphics window and as the starting point on the dialog.

    Image: CHANGE
    DIRECTORY

    Browse to the required directory, then double click on the folder icon or click OK. If the VR-Editor is active, it will read the Q1 (if any) in the new directory.

  5. Options - Phoenics Environment Setting

    The Phoenics environment variable is used when Phoenics has not been installed in the root directory. Any changes here are not made permanent, and only persist for the duration of the session and are reset when the users leaves the VR environment.

  6. Options - File format

    This allows the choice between sequential and direct access format for the PHI and XYZ files.

    Image: CHOOSE FILE
    FORMAT

    Direct access (PHIDA, XYZDA) files will give faster access in Earth, Photon and VR-Viewer. They may also be smaller, depending on the relative sizes of the grid and physical record length. They are not, however, portable between different computer platforms.

    These settings are held in the PREFIX file. This can be edited from File - Open file for editing. The direct-access record lengths are set in CONFIG. Note that if the CONFIG file is changed, the CONFIG= setting at the end of PREFIX should be changed to CONFIG=config, otherwise the changes will not be picked up.

  7. Options - Hardware Acceleration

    When ticked, the graphics card hardware acceleration feature will be active. When not ticked, it will be turned off. On some computers, turning the hardware acceleration off can eliminate graphics artifacts such as grey blocks where dialogs used to be, or Viewer contour scales not being redrawn after a rotation. This setting will over-ride any global settings made in Windows dialogs. It is held in the CHAM.INI file, in the [FTN386] section. This file can be edited from  File - Open file for editing.

  8. Options - Change font

    This allows the font, font weight and font size used to be changed. A list of available fonts is presented:

    Image: FONTS

    The new font will be used the next time an object dialog box, the Main menu or a Text item is displayed.

    The font information is held in CHAM.INI, which can be edited from File - open file for editing. The default font is Courier new. The System font also works well. The dialogs are designed to work best with fixed pitch fonts.

    Note that the Font style - Italic and Bold  settings are ignored.

    If a dialog is so tall that the OK button at the bottom is not visible, reducing the font size by one or two point sizes will make it visible again.

  9. Options - Clear textbox contents

    This deletes the contents of the Text Box.

  10. Options - Background Colour

    This opens a dialog which allows the background colour of the VR-Editor/VR-Viewer main graphics window to be set.

    IMAGE: Background
    Colour Dialog

    The RGB values of the chosen colour are saved in a local copy of the CHAM.INI file. This file can be edited from File - Open file for editing. The extract which sets the background colour is shown below:

    [FTN386]
    VR_Background = iRed iBlue iGreen

    where iRed iBlue iGreen are the Red, Blue and Green indices on a scale of 0 - 255. 0 0 0 is black, and 255 255 255 is white. 222 222 222  produces a grey background.

    The names 'black' (0,0,0), 'white' (255, 255, 255), 'blue' (0,0,255), 'green' (0,255,0), 'red' (255,0,0) and 'navy' (0,0,128) are also recognised as VR_Background settings.

    If the VR_Background line is missing or incorrect, black is assumed.

    If a white or light colour background is chosen, the text colour will be black. For darker background colours the text colour will be white.

    When images are saved to a file ('File - Save Window As'), or sent to the printer ('File - Print'), the current background colour will be used as the background colour.

  11. Additional Interfaces

    This leads to additional output interfaces.

    IMAGE:Additional Interfaces

    Additional TECPLOT Output Additional Fieldview Output Additional VTK Output Additional STL single-file Output Additional individual STL Output

    Additional TECPLOT Output:

    When selected, additional output files in Tecplot format are written by the Editor and the Solver. In total, three files are involved.

    The data files written are compatible with Tecplot 10 and Tecplot 360. In Tecplot 360 the 'Tecplot Data loader' should be selected. This displays the same file selection dialog as Tecplot 10. This interface can be used for Cartesian, cylindrical-polar and BFC (including multi-block) coordinates.

    Select the TECGEOM.DAT and TECDATA.DAT files together and click 'Open'. A warning dialog will appear.

    IMAGE: TECPLOT data
    loader warning dialog

    Click OK to proceed, and on the next 'Load Data File Options' dialog click 'Move All>>' to read all variables from both files.

    IMAGE: TECPLOT data
    loader dialog

    Click 'OK' to proceed. The 'Initial PlotType' should be set to '3D Cartesian'.

    Once the data files have been read, run the PHOENICS macro. The PHOENICS macro will:

    Zone1 contains a grid located at the PHOENICS cell centres. The data is the 'raw' PHOENICS data, apart from the velocities which have been averaged from the cell faces to the cell centres. For PARSOL cut cells, the cell centre locations are the centres of the fluid cells. This zone is suitable for plotting vectors, as the vector tails will be in the same location as in the Viewer.

    Zone2 contains a grid located at the PHOENICS cell corners. The data has been averaged from the surrounding cell centres for scalars, or cell faces for vector quantities. The values in PARSOL cut cells are those from the fluid cells. Contours plotted from this zone will fill to the edge of the domain as in the Viewer.

    The remaining zones contain the individual objects making up the geometry.

    In transient cases data files are written with the same step frequency as the usual intermediate flow-fields - see ' Main Menu - Output - Dump Settings'. Open all the files in the sequence together. They will be recognised as a transient sequence, allowing for easy animation.

    Additional FIELDVIEW Output:

    When selected, additional output files in FIELDVIEW format are written by the Editor and the Solver. In total, five files are involved.

    The data files written are compatible with FIELDVIEW 11. This interface can be used for Cartesian, cylindrical-polar and BFC (including multi-block) coordinates, with the restriction that vectors will not be plotted correctly for polar cases with NX>1.

    To load the geometry, from the FIELDVIEW 'File - Data Input' menu select FV-UNS. On the FV-UNS dialog select 'Read Grid or Combined Data...', then select the fvgeom.fvuns file and click 'Open'. To display the geometry, open the Boundary Surface panel and click 'Create'. Each object in the PHOENICS model will appear as a 'Boundary type'. They can then be rendered as desired.

    To load the solution data, from the FIELDVIEW 'File - Data Input' menu select PLOT3D. On the PLOT3D dialog, make sure the settings are as shown below.

    IMAGE: FIELDVIEW
    PLOT3D Dialog

    Click 'Read XYZ Data...', select the fvdata.g file and click Open. Select grid 1 then click OK. Click 'Read Function Data...', select the fvdata.f file and click Open. The 'Function Name Input' dialog will open. Click 'Open Function Name File...', select the fvdata.nam file and click Open. Click 'Select all' then OK. Repeat this process, this time selecting grid 2 from the fvdata.g file. The PLOT3D dialog can now be closed.

    Grid 1 contains a grid located at the PHOENICS cell centres. The data is the 'raw' PHOENICS data, apart from the velocities which have been averaged from the cell faces to the cell centres. For PARSOL cut cells, the cell centre locations are the centres of the fluid cells. This zone is suitable for plotting vectors, as the vector tails will be in the same location as in the Viewer.

    Grid 2 contains a grid located at the PHOENICS cell corners. The data has been averaged from the surrounding cell centres for scalars, or cell faces for vector quantities. The values in PARSOL cut cells are those from the fluid cells. Contours plotted from this zone will fill to the edge of the domain as in the Viewer.

    FIELDVIEW will see these files as three data sets. Geometry is plotted from dataset 1, Vectors from dataset 2 and Contours from dataset 3.

    Computational surfaces plot vectors with the tails at cell corners, and so will display correct vectors from grid 1 as the corners of grid 1 are the PHOENICS cell centres. Vectors displayed on computational surfaces from grid 2 will have their tails at the PHOENICS cell corners, and so will not replicate those drawn by the Viewer.

    Coordinate surfaces plot vectors with the tails at the cell centres. For cases which do not use PARSOL, coordinate surface vectors will be drawn correctly from grid 2. For cases which do use PARSOL, the vectors in the cut cells will be displaced, as they will still be drawn at the cell centre, not the centre of the fluid part. Vectors drawn on coordinate surfaces from grid 1 will not be correct, as the centres of the grid 1 cells do not match any PHOENICS storage location.

    To create a scalar field of absolute velocity, from the FIELDVIEW 'File - Open Restart' menu select 'Formula...'. On the OPEN RESTART:Formula dialog select the fvformula.frm file and click Open. This will create a new Scalar Function vel1 for phase 1 and vel2 for phase 2 in two-phase cases.

    In transient cases data files are written with the same step frequency as the usual intermediate flow-fields - see ' Main Menu - Output - Dump Settings'. When opening the grid and function files, select the first file in the series. FIELDVIEW will recognise this as a transient sequence and will offer to open all the remaining files, allowing for easy animation.

    Additional VTK Output:

    When selected, additional output files in VTK format are written by the Solver. These files are compatible with the ParaView post-processor available for free download on the web.

    In total, two files are involved.

    Vtkcentre.vtk contains a grid located at the PHOENICS cell centres. The data is the 'raw' PHOENICS data, apart from the velocities which have been averaged from the cell faces to the cell centres. For PARSOL cut cells, the cell centre locations are the centres of the fluid cells. This zone is suitable for plotting vectors, as the vector tails will be in the same location as in the Viewer.

    Vtkvertex.vtk contains a grid located at the PHOENICS cell corners. The data has been averaged from the surrounding cell centres for scalars, or cell faces for vector quantities. The values in PARSOL cut cells are those from the fluid cells. Contours plotted from this zone will fill to the edge of the domain as in the Viewer.

    In transient cases data files are written with the same step frequency as the usual intermediate flow-fields - see ' Main Menu - Output - Dump Settings'. When opening the data files, ParaView will recognise this as a transient sequence and will open all the files, allowing for easy animation.

    To display the geometry in ParaView activate the additional individual STL output. The STL files created by the Editor for each object can then be read by ParaView.

    Additional single-file STL Output:

    The entire geometry is written as a single STL file, out_all.stl.

    Additional individual STL Output:

    Each object is written to a separate STL file with the name object_name.stl.


Compile Menu

The Compile menu contains the following options:

Image: COMPILE MENU

Main, Ground, Satlit, Gentra

For these options to work correctly, the batch file /phoenics /d_utils /phoepath.bat must be correctly configured, to refer to the correct drive letters and folders for PHOENICS and the Fortran Compiler. See the 'Troubleshooting' section of TR/110 for more details. The locations of the model source files are read from \phoenics\d_allpro\phoesav.cfg.

  1. Compile - Main

    This will invoke the Fortran compiler to compile MAIN.HTM, the main program of the Earth solver. If a local copy of MAIN.HTM exists, it will be compiled. If it does not exist, a model file will be copied from \phoenics\d_earth\main.htm prior to compilation.

  2. Compile - Ground

    This will invoke the Fortran compiler to compile GROUND.HTM, the user-accessible open-source routine. If a local copy of GROUND.HTM exists, it will be compiled. If it does not exist, an 'empty' ground will be copied from \phoenics\d_earth\ground.htm prior to compilation.

  3. Compile - Satlit

    This will invoke the Fortran compiler to compile SATLIT.HTM, the main program of the Satellite. If a local copy of SATLIT.HTM exists, it will be compiled. If it does not exist, a model file will be copied from \phoenics\d_satell\satlit.htm prior to compilation.

  4. Compile - Gentra

    This will invoke the Fortran compiler to compile GENTRA.HTM, the user-accessible open-source routine. If a local copy of GENTRA.HTM exists, it will be compiled. If it does not exist, an 'empty' ground will be copied from \phoenics\d_earth\d_opt\d_gentra\gentra.htm prior to compilation.


Build Menu

The Build menu contains the following items:

Image: BUILD MENU

Satellite, Earth

For these options to work correctly, the batch file /phoenics/d_utils/phoepath.bat must be correctly configured, to refer to the correct drive letters and folders for PHOENICS and the Compiler. See the 'Troubleshooting' section of TR/110 for more details.

  1. Build - Satellite

    This will invoke the linker to relink a local copy of the Satellite executable, SATEXE.EXE. If a local copy of SATLIT.OBJ exists, it will be used, otherwise the default version will be used. To run the local executable, select Private, or Prompt - Private from the Options - Run version menu.

  2. Build - Earth

    This will invoke the  linker to relink a local copy of the Earth executable, EAREXE.EXE. If local copies of MAIN.OBJ, GROUND.OBJ or GENTRA.OBJ exist, they will be used, otherwise the default versions will be used. To run the local executable, select Private, or Prompt - Private from the Options - Run version menu.


Help

The HELP menu contains the following items:

Image: HELP MENU

Help, POLIS, Search, About

  1. Help - Help

    The Help button leads directly to help files specific to the currently-selected Special Purpose Program.

  2. Help - POLIS

    This will start the PHOENICS On-line Information System, POLIS.

  3. Help - About

    This displays brief version information.

  4. Help - Search

    This searches through the PHOENICS documentation for a word or phrase. The dialog shown here

    is displayed.

    Enter the word or phrase in the 'Search for' entry box. Select the areas to search in, then click OK. If not sure where to search, select All Areas. The results of the search will be displayed in a new browser window.


The Tool Bar

Toolbar icons are available for all the controls on the hand-sets, enabling them to be closed without loss of functionality.

The tool bar in the Editor consists of four separate areas, which are controlled from ' View - Toolbars'. The buttons use the same icons as on the hand-set, and all have bubble-help

General tool bar, Domain Tool bar, Object tool bar, Movement toolbar

General tool bar

The general tool bar icons lead directly to the Start New Case, Open Existing case, Save as a case, Save Window As and Print dialog boxes respectively.

The icon causes the screen image to be refreshed - this can sometimes be necessary if the image has been obscured by another window and is not redrawn automatically for whatever reason. Clicking on the background of the graphics window also refreshes the image.

The general tool bar also displays the name and type of any selected object. If no object is selected, it will display the name of the domain (usually CHAM).

Domain tool bar

The domain toolbar contains icons for Axis Toggle, Top View Toggle, Show probe location, Mesh toggle, Wireframe Toggle, Geometry Cells and Main Menu

Object tool bar

The Object tool bar contains icons for Object Management, Duplicate Object or Group, Duplicate using Array and Delete object

Movement tool bar

The Movement tool bar contains icons for Zoom in / Move Forward, Zoom Out / Move Backward, View Left / Move Left, View Right / Move Right, View Up / Move Up, View Down / Move Down, Tilt Left / Angle Up, Tilt Right / Angle Down and Reset View Parameters.

There is also a pull down menu available for several features of the Reset menu, as shown below.


The Status Bar

The status bar displays the current working directory when VR-Editor is not busy. When it is reading or writing files, it displays Preparing Editor data, Please wait.


Contents list